mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00
156 lines
4.7 KiB
Python
156 lines
4.7 KiB
Python
import argparse
|
|
import copy
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
import torch
|
|
from deepseek_coder import DeepseekCoder, ModelArgs
|
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
def quantize(weights, config, args):
|
|
quantized_config = copy.deepcopy(config)
|
|
|
|
# Load the model:
|
|
model_args = ModelArgs(**config)
|
|
model = DeepseekCoder(model_args)
|
|
|
|
weights = tree_map(mx.array, weights)
|
|
model.update(tree_unflatten(list(weights.items())))
|
|
|
|
# Quantize the model:
|
|
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
|
|
|
# Update the config:
|
|
quantized_config["quantization"] = {
|
|
"group_size": args.q_group_size,
|
|
"bits": args.q_bits,
|
|
}
|
|
quantized_weights = dict(tree_flatten(model.parameters()))
|
|
|
|
return quantized_weights, quantized_config
|
|
|
|
|
|
def convert(args):
|
|
hf_path = Path(args.hf_path)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
str(hf_path), trust_remote_code=True, torch_dtype=torch.float16
|
|
)
|
|
config = model.config.to_dict()
|
|
|
|
state_dict = model.state_dict()
|
|
tokenizer = AutoTokenizer.from_pretrained(str(hf_path), trust_remote_code=True, use_fast=False)
|
|
|
|
# things to change
|
|
# 1. there's no "model." in the weight names
|
|
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
|
|
|
# 2. mlp is called feed_forward
|
|
state_dict = {k.replace("mlp", "feed_forward"): v for k, v in state_dict.items()}
|
|
|
|
# 3. up_proj, down_proj, gate_proj
|
|
state_dict = {k.replace("down_proj", "w2"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("up_proj", "w3"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("gate_proj", "w1"): v for k, v in state_dict.items()}
|
|
|
|
# 4. layernorms
|
|
state_dict = {
|
|
k.replace("input_layernorm", "attention_norm"): v for k, v in state_dict.items()
|
|
}
|
|
state_dict = {
|
|
k.replace("post_attention_layernorm", "ffn_norm"): v
|
|
for k, v in state_dict.items()
|
|
}
|
|
|
|
# 5. lm head
|
|
state_dict = {k.replace("lm_head", "output"): v for k, v in state_dict.items()}
|
|
|
|
# 6. token emb
|
|
state_dict = {
|
|
k.replace("embed_tokens", "tok_embeddings"): v for k, v in state_dict.items()
|
|
}
|
|
|
|
# 7. attention
|
|
state_dict = {k.replace("self_attn", "attention"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("q_proj", "wq"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("k_proj", "wk"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("v_proj", "wv"): v for k, v in state_dict.items()}
|
|
state_dict = {k.replace("o_proj", "wo"): v for k, v in state_dict.items()}
|
|
|
|
weights = {k: v.numpy() for k, v in state_dict.items()}
|
|
|
|
config["rope_scaling_factor"] = config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
|
keep_keys = set(
|
|
[
|
|
"vocab_size",
|
|
"hidden_size",
|
|
"num_attention_heads",
|
|
"num_key_value_heads",
|
|
"num_hidden_layers",
|
|
"max_position_embeddings",
|
|
"rms_norm_eps",
|
|
"intermediate_size",
|
|
"rope_scaling_factor",
|
|
"rope_theta"
|
|
]
|
|
)
|
|
for k in list(config.keys()):
|
|
if k not in keep_keys:
|
|
config.pop(k)
|
|
|
|
return weights, config, tokenizer
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Convert Deepseek coder model to npz")
|
|
parser.add_argument(
|
|
"--hf-path",
|
|
help="The huggingface model to be converted",
|
|
default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
|
)
|
|
parser.add_argument(
|
|
"--mlx-path",
|
|
type=str,
|
|
default="mlx_model",
|
|
help="The path to save the MLX model.",
|
|
)
|
|
parser.add_argument(
|
|
"-q",
|
|
"--quantize",
|
|
help="Generate a quantized model.",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--q-group-size",
|
|
help="Group size for quantization.",
|
|
type=int,
|
|
default=64,
|
|
)
|
|
parser.add_argument(
|
|
"--q-bits",
|
|
help="Bits per weight for quantization.",
|
|
type=int,
|
|
default=4,
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
mlx_path = Path(args.mlx_path)
|
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
weights, config, tokenizer = convert(args)
|
|
|
|
if args.quantize:
|
|
print("[INFO] Quantizing")
|
|
weights, config = quantize(weights, config, args)
|
|
|
|
np.savez(str(mlx_path / "weights.npz"), **weights)
|
|
tokenizer.save_pretrained(mlx_path)
|
|
with open(mlx_path / "config.json", "w") as f:
|
|
config["model_type"] = "deepseek_coder"
|
|
json.dump(config, f, indent=4)
|