mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* update a few examples to use compile * update mnist * add compile to vae and rename some stuff for simplicity * update reqs * use state in eval * GCN example with RNG + dropout * add a bit of prefetching
128 lines
3.8 KiB
Python
128 lines
3.8 KiB
Python
import argparse
|
|
import time
|
|
from functools import partial
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx.optimizers as optim
|
|
import resnet
|
|
from dataset import get_cifar10
|
|
|
|
parser = argparse.ArgumentParser(add_help=True)
|
|
parser.add_argument(
|
|
"--arch",
|
|
type=str,
|
|
default="resnet20",
|
|
choices=[f"resnet{d}" for d in [20, 32, 44, 56, 110, 1202]],
|
|
help="model architecture",
|
|
)
|
|
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
|
|
parser.add_argument("--epochs", type=int, default=30, help="number of epochs")
|
|
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
|
|
parser.add_argument("--seed", type=int, default=0, help="random seed")
|
|
parser.add_argument("--cpu", action="store_true", help="use cpu only")
|
|
|
|
|
|
def eval_fn(model, inp, tgt):
|
|
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
|
|
|
|
|
|
def train_epoch(model, train_iter, optimizer, epoch):
|
|
def train_step(model, inp, tgt):
|
|
output = model(inp)
|
|
loss = mx.mean(nn.losses.cross_entropy(output, tgt))
|
|
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
|
|
return loss, acc
|
|
|
|
losses = []
|
|
accs = []
|
|
samples_per_sec = []
|
|
|
|
state = [model.state, optimizer.state]
|
|
|
|
@partial(mx.compile, inputs=state, outputs=state)
|
|
def step(inp, tgt):
|
|
train_step_fn = nn.value_and_grad(model, train_step)
|
|
(loss, acc), grads = train_step_fn(model, inp, tgt)
|
|
optimizer.update(model, grads)
|
|
return loss, acc
|
|
|
|
for batch_counter, batch in enumerate(train_iter):
|
|
x = mx.array(batch["image"])
|
|
y = mx.array(batch["label"])
|
|
tic = time.perf_counter()
|
|
loss, acc = step(x, y)
|
|
mx.eval(state)
|
|
toc = time.perf_counter()
|
|
loss = loss.item()
|
|
acc = acc.item()
|
|
losses.append(loss)
|
|
accs.append(acc)
|
|
throughput = x.shape[0] / (toc - tic)
|
|
samples_per_sec.append(throughput)
|
|
if batch_counter % 10 == 0:
|
|
print(
|
|
" | ".join(
|
|
(
|
|
f"Epoch {epoch:02d} [{batch_counter:03d}]",
|
|
f"Train loss {loss:.3f}",
|
|
f"Train acc {acc:.3f}",
|
|
f"Throughput: {throughput:.2f} images/second",
|
|
)
|
|
)
|
|
)
|
|
|
|
mean_tr_loss = mx.mean(mx.array(losses))
|
|
mean_tr_acc = mx.mean(mx.array(accs))
|
|
samples_per_sec = mx.mean(mx.array(samples_per_sec))
|
|
return mean_tr_loss, mean_tr_acc, samples_per_sec
|
|
|
|
|
|
def test_epoch(model, test_iter, epoch):
|
|
accs = []
|
|
for batch_counter, batch in enumerate(test_iter):
|
|
x = mx.array(batch["image"])
|
|
y = mx.array(batch["label"])
|
|
acc = eval_fn(model, x, y)
|
|
acc_value = acc.item()
|
|
accs.append(acc_value)
|
|
mean_acc = mx.mean(mx.array(accs))
|
|
return mean_acc
|
|
|
|
|
|
def main(args):
|
|
mx.random.seed(args.seed)
|
|
|
|
model = getattr(resnet, args.arch)()
|
|
|
|
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6))
|
|
|
|
optimizer = optim.Adam(learning_rate=args.lr)
|
|
|
|
train_data, test_data = get_cifar10(args.batch_size)
|
|
for epoch in range(args.epochs):
|
|
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
|
|
print(
|
|
" | ".join(
|
|
(
|
|
f"Epoch: {epoch}",
|
|
f"avg. Train loss {tr_loss.item():.3f}",
|
|
f"avg. Train acc {tr_acc.item():.3f}",
|
|
f"Throughput: {throughput.item():.2f} images/sec",
|
|
)
|
|
)
|
|
)
|
|
|
|
test_acc = test_epoch(model, test_data, epoch)
|
|
print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}")
|
|
|
|
train_data.reset()
|
|
test_data.reset()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
if args.cpu:
|
|
mx.set_default_device(mx.cpu)
|
|
main(args)
|