mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00

* probably approximatelly correct CLIPTextEncoder * implemented CLIPEncoderLayer as built-in nn.TransformerEncoderLayer * replaced embedding layer with simple matrix * implemented ViT * added ViT tests * fixed tests * added pooler_output for text * implemented complete CLIPModel * implemented init * implemented convert.py and from_pretrained * fixed some minor bugs and added the README.md * removed tokenizer unused comments * removed unused deps * updated ACKNOWLEDGEMENTS.md * Feat: Image Processor for CLIP (#1) @nkasmanoff: * clip image processor * added example usage * refactored image preprocessing * deleted unused image_config.py * removed preprocessing port * added dependency to mlx-data * fixed attribution and moved photos to assets * implemented a simple port of CLIPImageProcessor * review changes * PR review changes * renamed too verbose arg * updated README.md * nits in readme / conversion * simplify some stuff, remove unneeded inits * remove more init stuff * more simplify * make test a unit test * update main readme * readme nits --------- Co-authored-by: Noah Kasmanoff <nkasmanoff@gmail.com> Co-authored-by: Awni Hannun <awni@apple.com>
284 lines
9.3 KiB
Python
284 lines
9.3 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import json
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Any, Optional
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.core import linalg as LA
|
|
from mlx.nn.losses import cross_entropy
|
|
from mlx.utils import tree_flatten
|
|
|
|
|
|
@dataclass
|
|
class CLIPVisionOutput:
|
|
pooler_output: mx.array
|
|
last_hidden_state: mx.array
|
|
|
|
|
|
@dataclass
|
|
class CLIPTextOutput:
|
|
pooler_output: mx.array
|
|
last_hidden_state: mx.array
|
|
|
|
|
|
@dataclass
|
|
class CLIPModelOutput:
|
|
loss: Optional[mx.array]
|
|
text_embeds: Optional[mx.array]
|
|
image_embeds: Optional[mx.array]
|
|
text_model_output: CLIPTextOutput
|
|
vision_model_output: CLIPVisionOutput
|
|
|
|
|
|
@dataclass
|
|
class CLIPTextConfig:
|
|
num_hidden_layers: int
|
|
hidden_size: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
max_position_embeddings: int
|
|
vocab_size: int
|
|
|
|
|
|
@dataclass
|
|
class CLIPVisionConfig:
|
|
num_hidden_layers: int
|
|
hidden_size: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
num_channels: int
|
|
image_size: int
|
|
patch_size: int
|
|
|
|
|
|
@dataclass
|
|
class CLIPConfig:
|
|
text_config: CLIPTextConfig
|
|
vision_config: CLIPVisionConfig
|
|
projection_dim: int
|
|
|
|
|
|
def quick_gelu(x: mx.array) -> mx.array:
|
|
"""
|
|
A fast GELU approximation https://github.com/hendrycks/GELUs
|
|
"""
|
|
return x * mx.sigmoid(1.702 * x)
|
|
|
|
|
|
def clip_loss(logits: mx.array) -> mx.array:
|
|
N, M = logits.shape
|
|
caption_loss = cross_entropy(logits, mx.arange(N), reduction="mean")
|
|
image_loss = cross_entropy(logits.T, mx.arange(M), reduction="mean")
|
|
return (caption_loss + image_loss) / 2.0
|
|
|
|
|
|
class CLIPEncoderLayer(nn.TransformerEncoderLayer):
|
|
"""The transformer encoder layer from CLIP."""
|
|
|
|
def __init__(self, hidden_dim: int, intermediate_dim: int, num_heads: int):
|
|
super().__init__(
|
|
dims=hidden_dim,
|
|
mlp_dims=intermediate_dim,
|
|
num_heads=num_heads,
|
|
activation=quick_gelu,
|
|
norm_first=True,
|
|
)
|
|
# Add biases to the attention projections
|
|
self.attention = nn.MultiHeadAttention(hidden_dim, num_heads, bias=True)
|
|
|
|
|
|
class CLIPTextModel(nn.Module):
|
|
"""Implements the text encoder transformer from CLIP."""
|
|
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
self.position_embedding = mx.zeros(
|
|
(config.max_position_embeddings, config.hidden_size)
|
|
)
|
|
self.layers = [
|
|
CLIPEncoderLayer(
|
|
config.hidden_size, config.intermediate_size, config.num_attention_heads
|
|
)
|
|
for _ in range(config.num_hidden_layers)
|
|
]
|
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def _embed(self, x: mx.array) -> mx.array:
|
|
embeddings = self.token_embedding(x)
|
|
embeddings += self.position_embedding[: x.shape[1]]
|
|
return embeddings
|
|
|
|
def __call__(self, x: mx.array) -> CLIPTextOutput:
|
|
B, N = x.shape
|
|
eot_tokens = mx.argmax(x, axis=-1)
|
|
x = self._embed(x)
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
|
|
for l in self.layers:
|
|
x = l(x, mask)
|
|
last_hidden_state = self.final_layer_norm(x)
|
|
pooler_output = last_hidden_state[mx.arange(B), eot_tokens]
|
|
|
|
return CLIPTextOutput(
|
|
pooler_output=pooler_output, last_hidden_state=last_hidden_state
|
|
)
|
|
|
|
|
|
class CLIPVisionModel(nn.Module):
|
|
"""Implements the vision encoder transformer from CLIP."""
|
|
|
|
def __init__(self, config: CLIPVisionConfig):
|
|
super().__init__()
|
|
|
|
self.class_embedding = mx.zeros((config.hidden_size,))
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=config.hidden_size,
|
|
kernel_size=config.patch_size,
|
|
stride=config.patch_size,
|
|
bias=False,
|
|
)
|
|
num_patches = (config.image_size // config.patch_size) ** 2
|
|
num_positions = num_patches + 1
|
|
self.position_embedding = mx.zeros((num_positions, config.hidden_size))
|
|
self.pre_layernorm = nn.LayerNorm(config.hidden_size)
|
|
self.layers = [
|
|
CLIPEncoderLayer(
|
|
config.hidden_size, config.intermediate_size, config.num_attention_heads
|
|
)
|
|
for _ in range(config.num_hidden_layers)
|
|
]
|
|
self.post_layernorm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def _embed(self, x: mx.array) -> mx.array:
|
|
batch_size = x.shape[0]
|
|
# Patchify using conv:
|
|
# [batch_size, sqrt(num_patches), sqrt(num_patches), embed_dim]
|
|
patch_embeddings = self.patch_embedding(x)
|
|
# [batch_size, num_patches, embed_dim]
|
|
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
embed_dim = patch_embeddings.shape[-1]
|
|
# Prepend <CLS> embeddings
|
|
# [batch_size, 1, embed_dim]
|
|
cls_embeddings = mx.broadcast_to(
|
|
self.class_embedding, (batch_size, 1, embed_dim)
|
|
)
|
|
# [batch_size, num_patches + 1, embed_dim]
|
|
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
|
|
# Add positional encoding
|
|
embeddings += self.position_embedding
|
|
return embeddings
|
|
|
|
def __call__(self, x: mx.array) -> CLIPVisionOutput:
|
|
x = self._embed(x)
|
|
x = self.pre_layernorm(x)
|
|
|
|
for l in self.layers:
|
|
x = l(x, mask=None)
|
|
|
|
# Extract <CLS> token embedding
|
|
pooler_output = self.post_layernorm(x[:, 0, :])
|
|
return CLIPVisionOutput(pooler_output=pooler_output, last_hidden_state=x)
|
|
|
|
|
|
class CLIPModel(nn.Module):
|
|
def __init__(self, config: CLIPConfig):
|
|
self.text_model = CLIPTextModel(config.text_config)
|
|
self.vision_model = CLIPVisionModel(config.vision_config)
|
|
|
|
text_embed_dim = config.text_config.hidden_size
|
|
vision_embed_dim = config.vision_config.hidden_size
|
|
projection_dim = config.projection_dim
|
|
|
|
self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
|
|
self.text_projection = nn.Linear(text_embed_dim, projection_dim, bias=False)
|
|
self.logit_scale = mx.array(0.0)
|
|
|
|
def get_text_features(self, x: mx.array) -> mx.array:
|
|
return self.text_projection(self.text_model(x).pooler_output)
|
|
|
|
def get_image_features(self, x: mx.array) -> mx.array:
|
|
return self.visual_projection(self.vision_model(x).pooler_output)
|
|
|
|
def __call__(
|
|
self,
|
|
input_ids: Optional[mx.array] = None,
|
|
pixel_values: Optional[mx.array] = None,
|
|
return_loss=False,
|
|
) -> CLIPModelOutput:
|
|
if input_ids is not None:
|
|
text_model_output = self.text_model(input_ids)
|
|
text_embeds = self.text_projection(text_model_output.pooler_output)
|
|
text_embeds = text_embeds / LA.norm(text_embeds, axis=-1, keepdims=True)
|
|
else:
|
|
text_embeds = None
|
|
text_model_output = None
|
|
|
|
if pixel_values is not None:
|
|
vision_model_output = self.vision_model(pixel_values)
|
|
image_embeds = self.visual_projection(vision_model_output.pooler_output)
|
|
image_embeds = image_embeds / LA.norm(image_embeds, axis=-1, keepdims=True)
|
|
else:
|
|
image_embeds = None
|
|
vision_model_output = None
|
|
|
|
if return_loss and (input_ids is None or pixel_values is None):
|
|
raise ValueError("Must provide text and image inputs to compute loss.")
|
|
|
|
if return_loss:
|
|
logit_scale = mx.exp(self.logit_scale)
|
|
logits = (text_embeds @ image_embeds.T) * logit_scale
|
|
loss = clip_loss(logits)
|
|
else:
|
|
loss = None
|
|
|
|
return CLIPModelOutput(
|
|
loss=loss,
|
|
text_embeds=text_embeds,
|
|
image_embeds=image_embeds,
|
|
vision_model_output=vision_model_output,
|
|
text_model_output=text_model_output,
|
|
)
|
|
|
|
@staticmethod
|
|
def from_pretrained(path: str):
|
|
path = Path(path)
|
|
|
|
with open(path / "config.json", "r") as fid:
|
|
config = json.load(fid)
|
|
|
|
text_config = config["text_config"]
|
|
text_config = CLIPTextConfig(
|
|
num_hidden_layers=text_config["num_hidden_layers"],
|
|
hidden_size=text_config["hidden_size"],
|
|
intermediate_size=text_config["intermediate_size"],
|
|
num_attention_heads=text_config["num_attention_heads"],
|
|
max_position_embeddings=text_config["max_position_embeddings"],
|
|
vocab_size=text_config["vocab_size"],
|
|
)
|
|
|
|
vision_config = config["vision_config"]
|
|
|
|
vision_config = CLIPVisionConfig(
|
|
num_hidden_layers=vision_config["num_hidden_layers"],
|
|
hidden_size=vision_config["hidden_size"],
|
|
intermediate_size=vision_config["intermediate_size"],
|
|
num_attention_heads=vision_config["num_attention_heads"],
|
|
num_channels=3,
|
|
image_size=vision_config["image_size"],
|
|
patch_size=vision_config["patch_size"],
|
|
)
|
|
|
|
config = CLIPConfig(
|
|
text_config=text_config,
|
|
vision_config=vision_config,
|
|
projection_dim=config["projection_dim"],
|
|
)
|
|
model = CLIPModel(config)
|
|
model.load_weights(str(path / "weights.npz"))
|
|
return model
|