mlx-examples/llms/setup.py
Chime Ogbuji df6bc09d74
Configuration-based use of HF hub-hosted datasets for training (#701)
* Add hf_dataset configuration for using HF hub-hosted datasets for (Q)LoRA training

* Pre-commit formatting

* Fix YAML config example

* Print DS info

* Include name

* Add hf_dataset parameter default

* Remove TextHFDataset and CompletionsHFDataset and use Dataset and CompletionsDataset instead, adding a text_key constructor argument to the former (and changing it to work with a provided data structure instead of just from a JSON file), and prompt_key and completion_key arguments to the latter with defaults for backwards compatibility.

* nits

* update docs

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-26 10:20:50 -07:00

44 lines
1.3 KiB
Python

# Copyright © 2024 Apple Inc.
import sys
from pathlib import Path
from setuptools import setup
package_dir = Path(__file__).parent / "mlx_lm"
with open(package_dir / "requirements.txt") as fid:
requirements = [l.strip() for l in fid.readlines()]
sys.path.append(str(package_dir))
from version import __version__
setup(
name="mlx-lm",
version=__version__,
description="LLMs on Apple silicon with MLX and the Hugging Face Hub",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
readme="README.md",
author_email="mlx@group.apple.com",
author="MLX Contributors",
url="https://github.com/ml-explore/mlx-examples",
license="MIT",
install_requires=requirements,
packages=["mlx_lm", "mlx_lm.models", "mlx_lm.tuner"],
python_requires=">=3.8",
extras_require={
"testing": ["datasets"],
},
entry_points={
"console_scripts": [
"mlx_lm.convert = mlx_lm.convert:main",
"mlx_lm.fuse = mlx_lm.fuse:main",
"mlx_lm.generate = mlx_lm.generate:main",
"mlx_lm.lora = mlx_lm.lora:main",
"mlx_lm.merge = mlx_lm.merge:main",
"mlx_lm.server = mlx_lm.server:main",
"mlx_lm.manage = mlx_lm.manage:main",
]
},
)