mlx-examples/lora/models/lora.py
Anchen 8022083979
feat(lora): add de-quantized support for fuse.py (#351)
* feat(lora): add de-quantized support for fuse.py

* address comments
2024-01-22 17:32:24 -08:00

87 lines
2.6 KiB
Python

import math
import mlx.core as mx
import mlx.nn as nn
class LoRALinear(nn.Module):
@staticmethod
def from_linear(linear: nn.Linear, rank: int = 8):
# TODO remove when input_dims and output_dims are attributes
# on linear and quantized linear
output_dims, input_dims = linear.weight.shape
if isinstance(linear, nn.QuantizedLinear):
input_dims *= 32 // linear.bits
lora_lin = LoRALinear(input_dims, output_dims, rank)
lora_lin.linear = linear
return lora_lin
def to_linear(self, de_quantize: bool = False):
linear = self.linear
bias = "bias" in linear
weight = linear.weight
is_quantized = isinstance(linear, nn.QuantizedLinear)
# Use the same type as the linear weight if not quantized
dtype = weight.dtype
if is_quantized:
dtype = mx.float16
weight = mx.dequantize(
weight,
linear.scales,
linear.biases,
linear.group_size,
linear.bits,
)
output_dims, input_dims = weight.shape
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
lora_b = (self.scale * self.lora_b.T).astype(dtype)
lora_a = self.lora_a.T.astype(dtype)
fused_linear.weight = weight + lora_b @ lora_a
if bias:
fused_linear.bias = linear.bias
if is_quantized and not de_quantize:
fused_linear = nn.QuantizedLinear.from_linear(
fused_linear,
linear.group_size,
linear.bits,
)
return fused_linear
def __init__(
self,
input_dims: int,
output_dims: int,
lora_rank: int = 8,
bias: bool = False,
scale: float = 20.0,
):
super().__init__()
# Regular linear layer weights
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
# Scale for low-rank update
self.scale = scale
# Low rank lora weights
scale = 1 / math.sqrt(input_dims)
self.lora_a = mx.random.uniform(
low=-scale,
high=scale,
shape=(input_dims, lora_rank),
)
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
def __call__(self, x):
dtype = self.linear.weight.dtype
if isinstance(self.linear, nn.QuantizedLinear):
dtype = self.linear.scales.dtype
y = self.linear(x.astype(dtype))
z = (x @ self.lora_a) @ self.lora_b
return y + self.scale * z