mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
254 lines
8.1 KiB
Python
254 lines
8.1 KiB
Python
from dataclasses import dataclass
|
|
from typing import Dict, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
|
|
from .base import BaseModelArgs
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
vocab_size: int = 32000
|
|
max_position_embeddings: int = 4096 * 32
|
|
hidden_size: int = 4096
|
|
intermediate_size: int = 14336
|
|
num_hidden_layers: int = 32
|
|
num_attention_heads: int = 32
|
|
num_experts_per_tok: int = 2
|
|
num_key_value_heads: int = 8
|
|
num_local_experts: int = 8
|
|
rms_norm_eps: float = 1e-5
|
|
vocab_size: int
|
|
rope_theta: float = 1e6
|
|
rope_traditional: bool = False
|
|
model_type: str = None
|
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dims: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.weight = mx.ones((dims,))
|
|
self.eps = eps
|
|
|
|
def _norm(self, x):
|
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
|
|
def __call__(self, x):
|
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
return self.weight * output
|
|
|
|
|
|
class MixtralAttention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.hidden_size = args.hidden_size
|
|
self.num_heads = args.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = args.num_key_value_heads
|
|
self.max_position_embeddings = args.max_position_embeddings
|
|
self.rope_theta = args.rope_theta
|
|
|
|
self.repeats = self.num_heads // self.num_key_value_heads
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.q_proj = nn.Linear(
|
|
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
|
)
|
|
self.k_proj = nn.Linear(
|
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
)
|
|
self.v_proj = nn.Linear(
|
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
)
|
|
self.o_proj = nn.Linear(
|
|
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
|
)
|
|
|
|
self.rope = nn.RoPE(
|
|
self.head_dim,
|
|
traditional=args.rope_traditional,
|
|
base=args.rope_theta,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
|
0, 2, 1, 3
|
|
)
|
|
|
|
def repeat(a):
|
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
|
return a.reshape([B, self.num_heads, L, -1])
|
|
|
|
if self.repeats > 1:
|
|
keys, values = map(repeat, (keys, values))
|
|
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
scores += mask
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output), (keys, values)
|
|
|
|
|
|
class MixtralBLockSparseTop2MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.ffn_dim = args.intermediate_size
|
|
self.hidden_dim = args.hidden_size
|
|
|
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
|
|
|
self.act_fn = nn.silu
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
|
|
current_hidden_states = self.w2(current_hidden_states)
|
|
return current_hidden_states
|
|
|
|
|
|
class MixtralSparseMoeBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.hidden_dim = args.hidden_size
|
|
self.ffn_dim = args.intermediate_size
|
|
self.num_experts = args.num_local_experts
|
|
self.num_experts_per_tok = args.num_experts_per_tok
|
|
|
|
# gating
|
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
|
|
|
self.experts = [
|
|
MixtralBLockSparseTop2MLP(args=args) for _ in range(self.num_experts)
|
|
]
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
ne = self.num_experts_per_tok
|
|
orig_shape = x.shape
|
|
x = x.reshape(-1, x.shape[-1])
|
|
|
|
gates = self.gate(x)
|
|
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne])
|
|
|
|
scores = mx.softmax(
|
|
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
|
axis=-1,
|
|
).astype(gates.dtype)
|
|
|
|
mx.eval(inds)
|
|
inds = np.array(inds)
|
|
y = mx.zeros((x.shape[0], ne, x.shape[-1]))
|
|
for e, expert in enumerate(self.experts):
|
|
idx1, idx2 = map(mx.array, np.where(inds == e))
|
|
if idx1.size == 0:
|
|
continue
|
|
y[idx1, idx2] = expert(x[idx1])
|
|
|
|
y = (y * scores[:, :, None]).sum(axis=1)
|
|
|
|
return y.reshape(orig_shape)
|
|
|
|
|
|
class MixtralDecoderLayer(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.hidden_size = args.hidden_size
|
|
|
|
self.self_attn = MixtralAttention(args)
|
|
|
|
self.block_sparse_moe = MixtralSparseMoeBlock(args)
|
|
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + r
|
|
r = self.block_sparse_moe(self.post_attention_layernorm(h))
|
|
out = h + r
|
|
return out, cache
|
|
|
|
|
|
class MixtralModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
|
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
MixtralDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.embed_tokens(inputs)
|
|
|
|
mask = None
|
|
T = h.shape[1]
|
|
if T > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
|
mask = mask.astype(h.dtype)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
h, cache[e] = layer(h, mask, cache[e])
|
|
|
|
return self.norm(h), cache
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.model = MixtralModel(args)
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out, cache = self.model(inputs, cache)
|
|
return self.lm_head(out), cache
|