mlx-examples/lora/models/phi2.py
Yousif 7575125d5d
Added lora support for Phi-2 (#302)
* Added lora support for Phi-2

* Added Phi-2 support in fuse and convert

* format + readme

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-12 13:45:30 -08:00

139 lines
4.3 KiB
Python

import math
from dataclasses import dataclass
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
n_positions: int = 2048
vocab_size: int = 51200
n_embd: int = 2560
n_head: int = 32
n_layer: int = 32
rotary_dim: int = 32
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class RoPEAttention(nn.Module):
def __init__(self, dims: int, n_head: int, rotary_dim: int):
super().__init__()
self.n_head = n_head
self.q_proj = nn.Linear(dims, dims)
self.k_proj = nn.Linear(dims, dims)
self.v_proj = nn.Linear(dims, dims)
self.dense = nn.Linear(dims, dims)
self.rope = nn.RoPE(rotary_dim, traditional=False)
def __call__(self, x, mask=None, cache=None):
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Extract some shapes
n_head = self.n_head
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.dense(values_hat), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, dim)
self.act = nn.GELU(approx="precise")
def __call__(self, x) -> mx.array:
return self.fc2(self.act(self.fc1(x)))
class ParallelBlock(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
dims = config.n_embd
mlp_dims = dims * 4
self.self_attn = RoPEAttention(dims, config.n_head, config.rotary_dim)
self.input_layernorm = LayerNorm(dims)
self.mlp = MLP(dims, mlp_dims)
def __call__(self, x, mask, cache):
h = self.input_layernorm(x)
attn_h, cache = self.self_attn(h, mask, cache)
ff_h = self.mlp(h)
return attn_h + ff_h + x, cache
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
self.layers = [ParallelBlock(config) for i in range(config.n_layer)]
self.final_layernorm = LayerNorm(config.n_embd)
def __call__(self, x, mask, cache):
x = self.embed_tokens(x)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
x, cache[e] = layer(x, mask, cache[e])
return self.final_layernorm(x), cache
class Model(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.model = Transformer(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
def __call__(
self,
x: mx.array,
mask: mx.array = None,
cache: mx.array = None,
) -> tuple[mx.array, mx.array]:
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(x.dtype)
y, cache = self.model(x, mask, cache)
return self.lm_head(y), cache