mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* Added lora support for Phi-2 * Added Phi-2 support in fuse and convert * format + readme --------- Co-authored-by: Awni Hannun <awni@apple.com>
139 lines
4.3 KiB
Python
139 lines
4.3 KiB
Python
import math
|
|
from dataclasses import dataclass
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
n_positions: int = 2048
|
|
vocab_size: int = 51200
|
|
n_embd: int = 2560
|
|
n_head: int = 32
|
|
n_layer: int = 32
|
|
rotary_dim: int = 32
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
|
|
|
|
|
class RoPEAttention(nn.Module):
|
|
def __init__(self, dims: int, n_head: int, rotary_dim: int):
|
|
super().__init__()
|
|
|
|
self.n_head = n_head
|
|
|
|
self.q_proj = nn.Linear(dims, dims)
|
|
self.k_proj = nn.Linear(dims, dims)
|
|
self.v_proj = nn.Linear(dims, dims)
|
|
self.dense = nn.Linear(dims, dims)
|
|
|
|
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
# Extract some shapes
|
|
n_head = self.n_head
|
|
B, L, D = queries.shape
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
|
|
|
# Add RoPE to the queries and keys and combine them with the cache
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
queries = queries.astype(mx.float32)
|
|
keys = keys.astype(mx.float32)
|
|
|
|
# Finally perform the attention computation
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
|
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.dense(values_hat), (keys, values)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, dim, hidden_dim):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
self.act = nn.GELU(approx="precise")
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
class ParallelBlock(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
dims = config.n_embd
|
|
mlp_dims = dims * 4
|
|
self.self_attn = RoPEAttention(dims, config.n_head, config.rotary_dim)
|
|
self.input_layernorm = LayerNorm(dims)
|
|
self.mlp = MLP(dims, mlp_dims)
|
|
|
|
def __call__(self, x, mask, cache):
|
|
h = self.input_layernorm(x)
|
|
attn_h, cache = self.self_attn(h, mask, cache)
|
|
ff_h = self.mlp(h)
|
|
return attn_h + ff_h + x, cache
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
|
self.layers = [ParallelBlock(config) for i in range(config.n_layer)]
|
|
self.final_layernorm = LayerNorm(config.n_embd)
|
|
|
|
def __call__(self, x, mask, cache):
|
|
x = self.embed_tokens(x)
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
return self.final_layernorm(x), cache
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.model = Transformer(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: mx.array = None,
|
|
cache: mx.array = None,
|
|
) -> tuple[mx.array, mx.array]:
|
|
mask = None
|
|
if x.shape[1] > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
mask = mask.astype(x.dtype)
|
|
|
|
y, cache = self.model(x, mask, cache)
|
|
return self.lm_head(y), cache
|