mlx-examples/llms/mlx_lm/models/cohere.py
Awni Hannun fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00

193 lines
5.7 KiB
Python

# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int = 8192
num_hidden_layers: int = 40
intermediate_size: int = 22528
num_attention_heads: int = 64
num_key_value_heads: int = 64
rope_theta: float = 8000000.0
vocab_size: int = 256000
layer_norm_eps: float = 1e-05
logit_scale: float = 0.0625
attention_bias: bool = False
layer_norm_bias: bool = False
use_qk_norm: bool = False
class LayerNorm2D(nn.Module):
def __init__(self, d1, d2, eps):
super().__init__()
self.weight = mx.zeros((d1, d2))
self.eps = eps
def __call__(self, x):
return self.weight * mx.fast.layer_norm(x, None, None, self.eps)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // args.num_attention_heads
self.scale = head_dim**-0.5
attetion_bias = args.attention_bias
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
self.use_qk_norm = args.use_qk_norm
if self.use_qk_norm:
self.q_norm = LayerNorm2D(self.n_heads, head_dim, eps=args.layer_norm_eps)
self.k_norm = LayerNorm2D(
self.n_kv_heads, head_dim, eps=args.layer_norm_eps
)
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = queries.reshape(B, L, self.n_heads, -1)
keys = keys.reshape(B, L, self.n_kv_heads, -1)
if self.use_qk_norm:
queries = self.q_norm(queries)
keys = self.k_norm(keys)
queries = queries.transpose(0, 2, 1, 3)
keys = keys.transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
def __call__(self, x):
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.n_heads = args.num_attention_heads
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = nn.LayerNorm(
args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
h = self.input_layernorm(x)
attn_h = self.self_attn(h, mask, cache)
ff_h = self.mlp(h)
return attn_h + ff_h + x
class CohereModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.LayerNorm(
args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias
)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.model = CohereModel(args)
self.args = args
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
out = self.model.embed_tokens.as_linear(out)
out = out * self.model.args.logit_scale
return out
@property
def layers(self):
return self.model.layers