mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
252 lines
7.8 KiB
Python
252 lines
7.8 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional, Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
vocab_size: int
|
|
d_model: int
|
|
ffn_config: dict
|
|
attn_config: dict
|
|
n_layers: int
|
|
n_heads: int
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_heads = args.n_heads
|
|
self.d_model = args.d_model
|
|
self.head_dim = args.d_model // args.n_heads
|
|
self.num_key_value_heads = args.attn_config["kv_n_heads"]
|
|
self.clip_qkv = args.attn_config["clip_qkv"]
|
|
self.rope_theta = args.attn_config["rope_theta"]
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.Wqkv = nn.Linear(
|
|
args.d_model,
|
|
(self.num_key_value_heads * 2 + self.num_heads) * self.head_dim,
|
|
bias=False,
|
|
)
|
|
self.out_proj = nn.Linear(args.d_model, args.d_model, bias=False)
|
|
self.rope = nn.RoPE(
|
|
self.head_dim,
|
|
traditional=False,
|
|
base=self.rope_theta,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
|
|
qkv = self.Wqkv(x)
|
|
qkv = mx.clip(qkv, a_min=-self.clip_qkv, a_max=self.clip_qkv)
|
|
splits = [self.d_model, self.d_model + self.head_dim * self.num_key_value_heads]
|
|
queries, keys, values = mx.split(qkv, splits, axis=-1)
|
|
|
|
B, L, D = x.shape
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
|
0, 2, 1, 3
|
|
)
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.out_proj(output)
|
|
|
|
|
|
class NormAttnNorm(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.norm_1 = nn.LayerNorm(args.d_model, bias=False)
|
|
self.norm_2 = nn.LayerNorm(args.d_model, bias=False)
|
|
self.attn = Attention(args)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
h = self.attn(self.norm_1(x), mask=mask, cache=cache)
|
|
x = h + x
|
|
return x, self.norm_2(x)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, d_model: int, ffn_dim: int):
|
|
super().__init__()
|
|
self.v1 = nn.Linear(d_model, ffn_dim, bias=False)
|
|
self.w1 = nn.Linear(d_model, ffn_dim, bias=False)
|
|
self.w2 = nn.Linear(ffn_dim, d_model, bias=False)
|
|
self.act_fn = nn.silu
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
current_hidden_states = self.act_fn(self.w1(x)) * self.v1(x)
|
|
current_hidden_states = self.w2(current_hidden_states)
|
|
return current_hidden_states
|
|
|
|
|
|
class Router(nn.Module):
|
|
def __init__(self, d_model: int, num_experts: int):
|
|
super().__init__()
|
|
self.layer = nn.Linear(d_model, num_experts, bias=False)
|
|
|
|
def __call__(self, x: mx.array):
|
|
return self.layer(x)
|
|
|
|
|
|
class SparseMoeBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.d_model = args.d_model
|
|
self.ffn_dim = args.ffn_config["ffn_hidden_size"]
|
|
self.num_experts = args.ffn_config["moe_num_experts"]
|
|
self.num_experts_per_tok = args.ffn_config["moe_top_k"]
|
|
|
|
self.router = Router(self.d_model, self.num_experts)
|
|
self.experts = [
|
|
MLP(self.d_model, self.ffn_dim) for _ in range(self.num_experts)
|
|
]
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
ne = self.num_experts_per_tok
|
|
orig_shape = x.shape
|
|
x = x.reshape(-1, x.shape[-1])
|
|
|
|
gates = self.router(x)
|
|
gates = mx.softmax(gates.astype(mx.float32), axis=-1)
|
|
|
|
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne - 1, axis=-1)[:, :ne])
|
|
scores = mx.take_along_axis(gates, inds, axis=-1)
|
|
scores = scores / mx.linalg.norm(scores, ord=1, axis=-1, keepdims=True)
|
|
scores = scores.astype(x.dtype)
|
|
|
|
if self.training:
|
|
inds = np.array(inds)
|
|
y = mx.zeros((x.shape[0], ne, x.shape[-1]), x.dtype)
|
|
for e, expert in enumerate(self.experts):
|
|
idx1, idx2 = map(mx.array, np.where(inds == e))
|
|
if idx1.size == 0:
|
|
continue
|
|
y[idx1, idx2] = expert(x[idx1])
|
|
|
|
y = (y * scores[:, :, None]).sum(axis=1)
|
|
else:
|
|
y = []
|
|
for xt, st, it in zip(x, scores, inds.tolist()):
|
|
yt = mx.stack([self.experts[e](xt) for e in it], axis=-1)
|
|
yt = (yt * st).sum(axis=-1)
|
|
y.append(yt)
|
|
y = mx.stack(y, axis=0)
|
|
|
|
return y.reshape(orig_shape)
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.ffn = SparseMoeBlock(args)
|
|
self.norm_attn_norm = NormAttnNorm(args)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r, h = self.norm_attn_norm(x, mask, cache)
|
|
out = self.ffn(h) + r
|
|
return out
|
|
|
|
|
|
class DBRX(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.vocab_size = args.vocab_size
|
|
self.wte = nn.Embedding(args.vocab_size, args.d_model)
|
|
self.blocks = [DecoderLayer(args=args) for _ in range(args.n_layers)]
|
|
self.norm_f = nn.LayerNorm(args.d_model, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.wte(inputs)
|
|
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.blocks)
|
|
|
|
for layer, c in zip(self.blocks, cache):
|
|
h = layer(h, mask, c)
|
|
|
|
return self.norm_f(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.model_type = args.model_type
|
|
self.transformer = DBRX(args)
|
|
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.transformer(inputs, cache)
|
|
return self.lm_head(out)
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.transformer.blocks
|
|
|
|
def sanitize(self, weights):
|
|
# Split experts into sub matrices
|
|
num_experts = self.args.ffn_config["moe_num_experts"]
|
|
dim = self.args.ffn_config["ffn_hidden_size"]
|
|
|
|
pattern = "experts.mlp"
|
|
new_weights = {k: v for k, v in weights.items() if pattern not in k}
|
|
for k, v in weights.items():
|
|
if pattern in k:
|
|
experts = [
|
|
(k.replace(".mlp", f".{e}") + ".weight", sv)
|
|
for e, sv in enumerate(mx.split(v, num_experts, axis=0))
|
|
]
|
|
if k.endswith("w2"):
|
|
experts = [(s, sv.T) for s, sv in experts]
|
|
new_weights.update(experts)
|
|
return new_weights
|