mlx-examples/llms/mlx_lm/models/dbrx.py
Awni Hannun fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00

252 lines
7.8 KiB
Python

# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
vocab_size: int
d_model: int
ffn_config: dict
attn_config: dict
n_layers: int
n_heads: int
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_heads = args.n_heads
self.d_model = args.d_model
self.head_dim = args.d_model // args.n_heads
self.num_key_value_heads = args.attn_config["kv_n_heads"]
self.clip_qkv = args.attn_config["clip_qkv"]
self.rope_theta = args.attn_config["rope_theta"]
self.scale = self.head_dim**-0.5
self.Wqkv = nn.Linear(
args.d_model,
(self.num_key_value_heads * 2 + self.num_heads) * self.head_dim,
bias=False,
)
self.out_proj = nn.Linear(args.d_model, args.d_model, bias=False)
self.rope = nn.RoPE(
self.head_dim,
traditional=False,
base=self.rope_theta,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
qkv = self.Wqkv(x)
qkv = mx.clip(qkv, a_min=-self.clip_qkv, a_max=self.clip_qkv)
splits = [self.d_model, self.d_model + self.head_dim * self.num_key_value_heads]
queries, keys, values = mx.split(qkv, splits, axis=-1)
B, L, D = x.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
0, 2, 1, 3
)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(output)
class NormAttnNorm(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.norm_1 = nn.LayerNorm(args.d_model, bias=False)
self.norm_2 = nn.LayerNorm(args.d_model, bias=False)
self.attn = Attention(args)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
h = self.attn(self.norm_1(x), mask=mask, cache=cache)
x = h + x
return x, self.norm_2(x)
class MLP(nn.Module):
def __init__(self, d_model: int, ffn_dim: int):
super().__init__()
self.v1 = nn.Linear(d_model, ffn_dim, bias=False)
self.w1 = nn.Linear(d_model, ffn_dim, bias=False)
self.w2 = nn.Linear(ffn_dim, d_model, bias=False)
self.act_fn = nn.silu
def __call__(self, x: mx.array) -> mx.array:
current_hidden_states = self.act_fn(self.w1(x)) * self.v1(x)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class Router(nn.Module):
def __init__(self, d_model: int, num_experts: int):
super().__init__()
self.layer = nn.Linear(d_model, num_experts, bias=False)
def __call__(self, x: mx.array):
return self.layer(x)
class SparseMoeBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.d_model = args.d_model
self.ffn_dim = args.ffn_config["ffn_hidden_size"]
self.num_experts = args.ffn_config["moe_num_experts"]
self.num_experts_per_tok = args.ffn_config["moe_top_k"]
self.router = Router(self.d_model, self.num_experts)
self.experts = [
MLP(self.d_model, self.ffn_dim) for _ in range(self.num_experts)
]
def __call__(self, x: mx.array) -> mx.array:
ne = self.num_experts_per_tok
orig_shape = x.shape
x = x.reshape(-1, x.shape[-1])
gates = self.router(x)
gates = mx.softmax(gates.astype(mx.float32), axis=-1)
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne - 1, axis=-1)[:, :ne])
scores = mx.take_along_axis(gates, inds, axis=-1)
scores = scores / mx.linalg.norm(scores, ord=1, axis=-1, keepdims=True)
scores = scores.astype(x.dtype)
if self.training:
inds = np.array(inds)
y = mx.zeros((x.shape[0], ne, x.shape[-1]), x.dtype)
for e, expert in enumerate(self.experts):
idx1, idx2 = map(mx.array, np.where(inds == e))
if idx1.size == 0:
continue
y[idx1, idx2] = expert(x[idx1])
y = (y * scores[:, :, None]).sum(axis=1)
else:
y = []
for xt, st, it in zip(x, scores, inds.tolist()):
yt = mx.stack([self.experts[e](xt) for e in it], axis=-1)
yt = (yt * st).sum(axis=-1)
y.append(yt)
y = mx.stack(y, axis=0)
return y.reshape(orig_shape)
class DecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.ffn = SparseMoeBlock(args)
self.norm_attn_norm = NormAttnNorm(args)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r, h = self.norm_attn_norm(x, mask, cache)
out = self.ffn(h) + r
return out
class DBRX(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.vocab_size = args.vocab_size
self.wte = nn.Embedding(args.vocab_size, args.d_model)
self.blocks = [DecoderLayer(args=args) for _ in range(args.n_layers)]
self.norm_f = nn.LayerNorm(args.d_model, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.wte(inputs)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.blocks)
for layer, c in zip(self.blocks, cache):
h = layer(h, mask, c)
return self.norm_f(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.transformer = DBRX(args)
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
self.args = args
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.transformer(inputs, cache)
return self.lm_head(out)
@property
def layers(self):
return self.transformer.blocks
def sanitize(self, weights):
# Split experts into sub matrices
num_experts = self.args.ffn_config["moe_num_experts"]
dim = self.args.ffn_config["ffn_hidden_size"]
pattern = "experts.mlp"
new_weights = {k: v for k, v in weights.items() if pattern not in k}
for k, v in weights.items():
if pattern in k:
experts = [
(k.replace(".mlp", f".{e}") + ".weight", sv)
for e, sv in enumerate(mx.split(v, num_experts, axis=0))
]
if k.endswith("w2"):
experts = [(s, sv.T) for s, sv in experts]
new_weights.update(experts)
return new_weights