mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
259 lines
8.5 KiB
Python
259 lines
8.5 KiB
Python
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
from .switch_layers import SwitchGLU
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str = "deepseek"
|
|
vocab_size: int = 102400
|
|
hidden_size: int = 4096
|
|
intermediate_size: int = 11008
|
|
moe_intermediate_size: int = 1407
|
|
num_hidden_layers: int = 30
|
|
num_attention_heads: int = 32
|
|
num_key_value_heads: int = 32
|
|
n_shared_experts: Optional[int] = None
|
|
n_routed_experts: Optional[int] = None
|
|
num_experts_per_tok: Optional[int] = None
|
|
moe_layer_freq: int = 1
|
|
first_k_dense_replace: int = 0
|
|
max_position_embeddings: int = 2048
|
|
rms_norm_eps: float = 1e-6
|
|
rope_theta: float = 10000.0
|
|
rope_scaling: Optional[Dict] = None
|
|
attention_bias: bool = False
|
|
|
|
|
|
class DeepseekAttention(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.num_kv_heads = config.num_key_value_heads
|
|
self.head_dim = config.hidden_size // config.num_attention_heads
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
attention_bias = getattr(config, "attention_bias", False)
|
|
|
|
self.q_proj = nn.Linear(
|
|
self.hidden_size,
|
|
config.num_attention_heads * self.head_dim,
|
|
bias=attention_bias,
|
|
)
|
|
self.k_proj = nn.Linear(
|
|
self.hidden_size,
|
|
config.num_key_value_heads * self.head_dim,
|
|
bias=attention_bias,
|
|
)
|
|
self.v_proj = nn.Linear(
|
|
self.hidden_size,
|
|
config.num_key_value_heads * self.head_dim,
|
|
bias=attention_bias,
|
|
)
|
|
self.o_proj = nn.Linear(
|
|
self.hidden_size,
|
|
config.num_attention_heads * self.head_dim,
|
|
bias=attention_bias,
|
|
)
|
|
|
|
rope_scale = 1.0
|
|
if config.rope_scaling and config.rope_scaling["type"] == "linear":
|
|
assert isinstance(config.rope_scaling["factor"], float)
|
|
rope_scale = 1 / config.rope_scaling["factor"]
|
|
self.rope = nn.RoPE(
|
|
self.head_dim,
|
|
base=config.rope_theta,
|
|
scale=rope_scale,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, _ = x.shape
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
|
|
0, 2, 1, 3
|
|
)
|
|
keys = keys.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output)
|
|
|
|
|
|
class DeepseekMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ModelArgs,
|
|
hidden_size: Optional[int] = None,
|
|
intermediate_size: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = hidden_size or config.hidden_size
|
|
self.intermediate_size = intermediate_size or config.intermediate_size
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = nn.silu
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
class MoEGate(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.config = config
|
|
self.top_k = config.num_experts_per_tok
|
|
self.n_routed_experts = config.n_routed_experts
|
|
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
|
|
|
|
def __call__(self, x):
|
|
gates = x @ self.weight.T
|
|
scores = mx.softmax(gates, axis=-1, precise=True)
|
|
k = self.top_k
|
|
inds = mx.stop_gradient(mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k])
|
|
scores = mx.take_along_axis(scores, inds, axis=-1)
|
|
return inds, scores
|
|
|
|
|
|
class DeepseekMoE(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.config = config
|
|
self.switch_mlp = SwitchGLU(
|
|
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
|
|
)
|
|
|
|
self.gate = MoEGate(config)
|
|
if config.n_shared_experts is not None:
|
|
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
self.shared_experts = DeepseekMLP(
|
|
config=config, intermediate_size=intermediate_size
|
|
)
|
|
|
|
def __call__(self, x):
|
|
inds, scores = self.gate(x)
|
|
y = self.switch_mlp(x, inds)
|
|
y = (y * scores[..., None]).sum(axis=-2)
|
|
if self.config.n_shared_experts is not None:
|
|
y = y + self.shared_experts(x)
|
|
|
|
return y
|
|
|
|
|
|
class DeepseekDecoderLayer(nn.Module):
|
|
def __init__(self, config: ModelArgs, layer_idx: int):
|
|
super().__init__()
|
|
self.self_attn = DeepseekAttention(config)
|
|
self.mlp = (
|
|
DeepseekMoE(config)
|
|
if (
|
|
config.n_routed_experts is not None
|
|
and layer_idx >= config.first_k_dense_replace
|
|
and layer_idx % config.moe_layer_freq == 0
|
|
)
|
|
else DeepseekMLP(config)
|
|
)
|
|
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + r
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
out = h + r
|
|
return out
|
|
|
|
|
|
class DeepseekModel(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
self.layers = [
|
|
DeepseekDecoderLayer(config, idx) for idx in range(config.num_hidden_layers)
|
|
]
|
|
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
h = self.embed_tokens(x)
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
h = layer(h, mask, c)
|
|
|
|
return self.norm(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.args = config
|
|
self.model_type = config.model_type
|
|
self.model = DeepseekModel(config)
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache: Optional[Any] = None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
return self.lm_head(out)
|
|
|
|
def sanitize(self, weights):
|
|
for l in range(self.args.num_hidden_layers):
|
|
prefix = f"model.layers.{l}"
|
|
for m in ["gate_proj", "down_proj", "up_proj"]:
|
|
for k in ["weight", "scales", "biases"]:
|
|
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
|
|
to_join = [
|
|
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
|
|
for e in range(self.args.n_routed_experts)
|
|
]
|
|
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
|
return weights
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.layers
|