mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional, Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
hidden_size: int
|
|
num_hidden_layers: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
head_dim: int
|
|
rms_norm_eps: float
|
|
vocab_size: int
|
|
num_key_value_heads: int
|
|
rope_theta: float = 10000
|
|
rope_traditional: bool = False
|
|
attn_logit_softcapping: float = 50.0
|
|
final_logit_softcapping: float = 30.0
|
|
query_pre_attn_scalar: float = 144.0
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dims: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.weight = mx.ones((dims,))
|
|
self.eps = eps
|
|
|
|
def __call__(self, x):
|
|
return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
dim = args.hidden_size
|
|
self.n_heads = n_heads = args.num_attention_heads
|
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
self.repeats = n_heads // n_kv_heads
|
|
self.head_dim = head_dim = args.head_dim
|
|
|
|
self.scale = 1.0 / (args.query_pre_attn_scalar**0.5)
|
|
|
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
self.attn_logit_softcapping = args.attn_logit_softcapping
|
|
self.rope = nn.RoPE(
|
|
head_dim,
|
|
traditional=args.rope_traditional,
|
|
base=args.rope_theta,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
queries = queries * self.scale
|
|
|
|
if self.repeats > 1:
|
|
queries = queries.reshape(
|
|
B, self.n_kv_heads, self.repeats, L, self.head_dim
|
|
)
|
|
keys = mx.expand_dims(keys, 2)
|
|
values = mx.expand_dims(values, 2)
|
|
|
|
scores = queries @ keys.swapaxes(-1, -2)
|
|
scores = mx.tanh(scores / self.attn_logit_softcapping)
|
|
scores *= self.attn_logit_softcapping
|
|
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
scores = mx.softmax(scores, precise=True, axis=-1)
|
|
output = scores @ values
|
|
if self.repeats > 1:
|
|
output = output.reshape(B, self.n_heads, L, self.head_dim)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, dim, hidden_dim):
|
|
super().__init__()
|
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.down_proj(nn.gelu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_attention_heads = args.num_attention_heads
|
|
self.hidden_size = args.hidden_size
|
|
self.self_attn = Attention(args)
|
|
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
|
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.pre_feedforward_layernorm = RMSNorm(
|
|
args.hidden_size, eps=args.rms_norm_eps
|
|
)
|
|
self.post_feedforward_layernorm = RMSNorm(
|
|
args.hidden_size, eps=args.rms_norm_eps
|
|
)
|
|
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + self.post_attention_layernorm(r)
|
|
r = self.mlp(self.pre_feedforward_layernorm(h))
|
|
out = h + self.post_feedforward_layernorm(r)
|
|
return out
|
|
|
|
|
|
class GemmaModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
assert self.vocab_size > 0
|
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.embed_tokens(inputs)
|
|
h = h * (self.args.hidden_size**0.5)
|
|
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
h = layer(h, mask, c)
|
|
|
|
return self.norm(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.model_type = args.model_type
|
|
self.final_logit_softcapping = args.final_logit_softcapping
|
|
self.model = GemmaModel(args)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
out = self.model.embed_tokens.as_linear(out)
|
|
out = mx.tanh(out / self.final_logit_softcapping)
|
|
out = out * self.final_logit_softcapping
|
|
return out
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.layers
|