mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
199 lines
5.9 KiB
Python
199 lines
5.9 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
n_ctx: int
|
|
n_embd: int
|
|
n_head: int
|
|
n_layer: int
|
|
n_positions: int
|
|
layer_norm_epsilon: float
|
|
vocab_size: int
|
|
num_key_value_heads: int = None
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.n_head
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head"
|
|
|
|
self.n_embd = args.n_embd
|
|
self.n_head = args.n_head
|
|
self.head_dim = self.n_embd // self.n_head
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True)
|
|
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
qkv = self.c_attn(x)
|
|
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.c_proj(output)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.n_embd = args.n_embd
|
|
self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd)
|
|
self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.c_proj(nn.gelu_approx(self.c_fc(x)))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.n_head = args.n_head
|
|
self.n_embd = args.n_embd
|
|
self.layer_norm_epsilon = args.layer_norm_epsilon
|
|
self.attn = Attention(args)
|
|
self.mlp = MLP(args)
|
|
self.ln_1 = nn.LayerNorm(
|
|
self.n_embd,
|
|
eps=self.layer_norm_epsilon,
|
|
)
|
|
self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r = self.attn(self.ln_1(x), mask, cache)
|
|
h = x + r
|
|
r = self.mlp(self.ln_2(h))
|
|
out = h + r
|
|
return out
|
|
|
|
|
|
class GPT2Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.n_embd = args.n_embd
|
|
self.n_positions = args.n_positions
|
|
self.vocab_size = args.vocab_size
|
|
self.n_layer = args.n_layer
|
|
self.layer_norm_epsilon = args.layer_norm_epsilon
|
|
assert self.vocab_size > 0
|
|
self.wte = nn.Embedding(self.vocab_size, self.n_embd)
|
|
self.wpe = nn.Embedding(self.n_positions, self.n_embd)
|
|
self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)]
|
|
self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
_, L = inputs.shape
|
|
|
|
hidden_states = self.wte(inputs)
|
|
|
|
mask = None
|
|
if hidden_states.shape[1] > 1:
|
|
|
|
position_ids = mx.array(np.arange(L))
|
|
hidden_states += self.wpe(position_ids)
|
|
|
|
mask = create_attention_mask(hidden_states, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.h)
|
|
|
|
for layer, c in zip(self.h, cache):
|
|
hidden_states = layer(hidden_states, mask, cache=c)
|
|
|
|
return self.ln_f(hidden_states)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.model = GPT2Model(args)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
out = self.model.wte.as_linear(out)
|
|
return out
|
|
|
|
def sanitize(self, weights):
|
|
new_weights = {}
|
|
for i in range(self.args.n_layer):
|
|
if f"h.{i}.attn.bias" in weights:
|
|
del weights[f"h.{i}.attn.bias"]
|
|
if f"h.{i}.attn.c_attn.weight" in weights:
|
|
weights[f"h.{i}.attn.c_attn.weight"] = weights[
|
|
f"h.{i}.attn.c_attn.weight"
|
|
].transpose(1, 0)
|
|
if f"h.{i}.attn.c_proj.weight" in weights:
|
|
weights[f"h.{i}.attn.c_proj.weight"] = weights[
|
|
f"h.{i}.attn.c_proj.weight"
|
|
].transpose(1, 0)
|
|
if f"h.{i}.mlp.c_fc.weight" in weights:
|
|
weights[f"h.{i}.mlp.c_fc.weight"] = weights[
|
|
f"h.{i}.mlp.c_fc.weight"
|
|
].transpose(1, 0)
|
|
if f"h.{i}.mlp.c_proj.weight" in weights:
|
|
weights[f"h.{i}.mlp.c_proj.weight"] = weights[
|
|
f"h.{i}.mlp.c_proj.weight"
|
|
].transpose(1, 0)
|
|
for weight in weights:
|
|
if not weight.startswith("model."):
|
|
new_weights[f"model.{weight}"] = weights[weight]
|
|
else:
|
|
new_weights[weight] = weights[weight]
|
|
return new_weights
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.h
|