mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
217 lines
6.3 KiB
Python
217 lines
6.3 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
|
|
# Based on the transformers implementation at:
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
max_position_embeddings: int
|
|
hidden_size: int
|
|
num_attention_heads: int
|
|
num_hidden_layers: int
|
|
layer_norm_eps: float
|
|
vocab_size: int
|
|
rotary_emb_base: int
|
|
rotary_pct: float
|
|
num_key_value_heads: int = None
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
assert (
|
|
args.hidden_size % args.num_attention_heads == 0
|
|
), "hidden_size must be divisible by num_attention_heads"
|
|
|
|
self.hidden_size = args.hidden_size
|
|
self.num_attention_heads = args.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
|
|
self.rope = nn.RoPE(
|
|
dims=int(self.head_dim * args.rotary_pct),
|
|
traditional=False,
|
|
base=args.rotary_emb_base,
|
|
)
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.query_key_value = nn.Linear(
|
|
self.hidden_size, 3 * self.hidden_size, bias=True
|
|
)
|
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
qkv = self.query_key_value(x)
|
|
|
|
new_qkv_shape = qkv.shape[:-1] + (self.num_attention_heads, 3 * self.head_dim)
|
|
qkv = qkv.reshape(*new_qkv_shape)
|
|
|
|
queries, keys, values = [x.transpose(0, 2, 1, 3) for x in qkv.split(3, -1)]
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.dense(output)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.hidden_size = args.hidden_size
|
|
self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
|
|
self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
# gelu_approx corresponds to FastGELUActivation in transformers.
|
|
return self.dense_4h_to_h(nn.gelu_approx(self.dense_h_to_4h(x)))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.hidden_size = args.hidden_size
|
|
self.layer_norm_eps = args.layer_norm_eps
|
|
self.attention = Attention(args)
|
|
self.mlp = MLP(args)
|
|
self.input_layernorm = nn.LayerNorm(
|
|
self.hidden_size,
|
|
eps=self.layer_norm_eps,
|
|
)
|
|
self.post_attention_layernorm = nn.LayerNorm(
|
|
self.hidden_size, eps=self.layer_norm_eps
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
residual = x
|
|
# NeoX runs attention and feedforward network in parallel.
|
|
attn = self.attention(self.input_layernorm(x), mask, cache)
|
|
ffn = self.mlp(self.post_attention_layernorm(x))
|
|
out = attn + ffn + residual
|
|
return out
|
|
|
|
|
|
class GPTNeoXModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.hidden_size = args.hidden_size
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
self.layer_norm_eps = args.layer_norm_eps
|
|
assert self.vocab_size > 0
|
|
self.embed_in = nn.Embedding(self.vocab_size, self.hidden_size)
|
|
self.embed_out = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
self.h = [TransformerBlock(args=args) for _ in range(self.num_hidden_layers)]
|
|
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
_, L = inputs.shape
|
|
|
|
hidden_states = self.embed_in(inputs)
|
|
|
|
mask = create_attention_mask(hidden_states, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.h)
|
|
|
|
for layer, c in zip(self.h, cache):
|
|
hidden_states = layer(hidden_states, mask, cache=c)
|
|
|
|
out = self.final_layer_norm(hidden_states)
|
|
out = self.embed_out(out)
|
|
|
|
return out
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.model = GPTNeoXModel(args)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
return out
|
|
|
|
def sanitize(self, weights):
|
|
new_weights = {}
|
|
|
|
for w_key, w_value in weights.items():
|
|
# Created through register_buffer in Pytorch, not needed here.
|
|
ignore_suffixes = [
|
|
".attention.bias",
|
|
".attention.masked_bias",
|
|
".attention.rotary_emb.inv_freq",
|
|
]
|
|
|
|
skip_weight = False
|
|
for ignored_suffix in ignore_suffixes:
|
|
if w_key.endswith(ignored_suffix):
|
|
skip_weight = True
|
|
break
|
|
|
|
if skip_weight:
|
|
continue
|
|
|
|
if not w_key.startswith("model."):
|
|
w_key = f"model.{w_key}"
|
|
|
|
w_key = w_key.replace(".gpt_neox.layers.", ".h.")
|
|
w_key = w_key.replace(".gpt_neox.", ".")
|
|
|
|
new_weights[w_key] = w_value
|
|
|
|
return new_weights
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.h
|