mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
306 lines
9.8 KiB
Python
306 lines
9.8 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
hidden_size: int
|
|
num_hidden_layers: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
rms_norm_eps: float
|
|
vocab_size: int
|
|
head_dim: Optional[int] = None
|
|
max_position_embeddings: Optional[int] = None
|
|
num_key_value_heads: Optional[int] = None
|
|
attention_bias: bool = False
|
|
mlp_bias: bool = False
|
|
rope_theta: float = 10000
|
|
rope_traditional: bool = False
|
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
tie_word_embeddings: bool = True
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
if self.rope_scaling:
|
|
if not "factor" in self.rope_scaling:
|
|
raise ValueError(f"rope_scaling must contain 'factor'")
|
|
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
|
|
"rope_type"
|
|
)
|
|
if rope_type is None:
|
|
raise ValueError(
|
|
f"rope_scaling must contain either 'type' or 'rope_type'"
|
|
)
|
|
if rope_type not in ["linear", "dynamic", "llama3"]:
|
|
raise ValueError(
|
|
"rope_scaling 'type' currently only supports 'linear', 'dynamic' or 'llama3'"
|
|
)
|
|
|
|
|
|
class DynamicNTKScalingRoPE(nn.Module):
|
|
"""Implements the rotary positional encoding with Dynamic NTK scaling and Llama 3 RoPE."""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: int,
|
|
max_position_embeddings: int = 2048,
|
|
traditional: bool = False,
|
|
base: float = 10000,
|
|
scale: float = 1.0,
|
|
rope_type: str = "default",
|
|
rope_scaling: dict = None,
|
|
):
|
|
super().__init__()
|
|
self.dims = dims
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.traditional = traditional
|
|
self.scale = scale
|
|
self.rope_type = rope_type
|
|
self.rope_scaling = rope_scaling
|
|
self.base = base
|
|
self.compute_freqs()
|
|
|
|
def compute_freqs(self):
|
|
if self.rope_type != "llama3":
|
|
self._freqs = None
|
|
return
|
|
factor = self.rope_scaling["factor"]
|
|
low_freq_factor = self.rope_scaling.get("low_freq_factor", 1.0)
|
|
high_freq_factor = self.rope_scaling.get("high_freq_factor", 4.0)
|
|
old_context_len = self.rope_scaling.get(
|
|
"original_max_position_embeddings",
|
|
8192,
|
|
)
|
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor
|
|
high_freq_wavelen = old_context_len / high_freq_factor
|
|
|
|
freqs = self.base ** (mx.arange(0, self.dims, 2) / self.dims)
|
|
wavelens = 2 * mx.pi * freqs
|
|
|
|
freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs)
|
|
is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen)
|
|
smooth_factors = (old_context_len / wavelens - low_freq_factor) / (
|
|
high_freq_factor - low_freq_factor
|
|
)
|
|
smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors)
|
|
self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs)
|
|
self.base = None
|
|
|
|
def extra_repr(self):
|
|
return (
|
|
f"{self.dims}, traditional={self.traditional}, "
|
|
f"max_position_embeddings={self.max_position_embeddings}, "
|
|
f"scaling_factor={self.scale}, rope_type={self.rope_type}"
|
|
)
|
|
|
|
def __call__(self, x, offset: int = 0):
|
|
return mx.fast.rope(
|
|
x,
|
|
self.dims,
|
|
traditional=self.traditional,
|
|
base=self.base,
|
|
scale=self.scale,
|
|
offset=offset,
|
|
freqs=self._freqs,
|
|
)
|
|
|
|
|
|
def initialize_rope(args: ModelArgs):
|
|
head_dim = args.head_dim or args.hidden_size // args.num_attention_heads
|
|
|
|
rope_scaling = args.rope_scaling
|
|
rope_type = "default"
|
|
rope_scale = 1.0
|
|
|
|
if rope_scaling is not None:
|
|
rope_type = (
|
|
rope_scaling.get("type") or rope_scaling.get("rope_type") or "default"
|
|
)
|
|
if rope_type == "linear":
|
|
rope_scale = 1 / rope_scaling["factor"]
|
|
elif rope_type == "llama3":
|
|
rope_scale = 1.0 # The scaling is handled internally for llama3
|
|
|
|
return DynamicNTKScalingRoPE(
|
|
dims=head_dim,
|
|
max_position_embeddings=args.max_position_embeddings,
|
|
traditional=args.rope_traditional,
|
|
base=args.rope_theta,
|
|
scale=rope_scale,
|
|
rope_type=rope_type,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
dim = args.hidden_size
|
|
self.n_heads = n_heads = args.num_attention_heads
|
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
|
|
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
|
|
|
|
self.scale = head_dim**-0.5
|
|
if hasattr(args, "attention_bias"):
|
|
attention_bias = args.attention_bias
|
|
else:
|
|
attention_bias = False
|
|
|
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
|
|
|
self.rope = initialize_rope(args)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
dim = args.hidden_size
|
|
hidden_dim = args.intermediate_size
|
|
if hasattr(args, "mlp_bias"):
|
|
mlp_bias = args.mlp_bias
|
|
else:
|
|
mlp_bias = False
|
|
|
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
|
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_attention_heads = args.num_attention_heads
|
|
self.hidden_size = args.hidden_size
|
|
self.self_attn = Attention(args)
|
|
self.mlp = MLP(args)
|
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
|
args.hidden_size, eps=args.rms_norm_eps
|
|
)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + r
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
out = h + r
|
|
return out
|
|
|
|
|
|
class LlamaModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
assert self.vocab_size > 0
|
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.embed_tokens(inputs)
|
|
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
h = layer(h, mask, cache=c)
|
|
|
|
return self.norm(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.model = LlamaModel(args)
|
|
if not args.tie_word_embeddings:
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
if self.args.tie_word_embeddings:
|
|
out = self.model.embed_tokens.as_linear(out)
|
|
else:
|
|
out = self.lm_head(out)
|
|
return out
|
|
|
|
def sanitize(self, weights):
|
|
# Remove unused precomputed rotary freqs
|
|
return {
|
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
}
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.layers
|