mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* fix rotating kv cache for chat use case * reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat * nit in chat * fix tests * fix tests * fix tests * docs * chat command * comments + docs * Define meta_state on all Cache implementations * fixes + trim_prompt_cache api * fix default model --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
205 lines
6.8 KiB
Python
205 lines
6.8 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs, create_attention_mask
|
|
from .su_rope import SuScaledRotaryEmbedding
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
hidden_size: int
|
|
num_hidden_layers: int
|
|
intermediate_size: int
|
|
num_attention_heads: int
|
|
rms_norm_eps: float
|
|
vocab_size: int
|
|
num_key_value_heads: Optional[int] = None
|
|
rope_theta: float = 10000
|
|
rope_traditional: bool = False
|
|
rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
|
|
max_position_embeddings: int = 131072
|
|
original_max_position_embeddings: int = 4096
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
if self.rope_scaling:
|
|
required_keys = {"long_factor", "type"}
|
|
if not all(key in self.rope_scaling for key in required_keys):
|
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
|
|
if self.rope_scaling["type"] not in ["longrope", "su", "linear"]:
|
|
print(
|
|
"[WARNING] rope_scaling 'type' currently only supports 'linear', 'su', and 'longrope'; setting rope scaling to false."
|
|
)
|
|
self.rope_scaling = None
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
dim = args.hidden_size
|
|
self.n_heads = n_heads = args.num_attention_heads
|
|
assert args.num_key_value_heads is not None
|
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
|
|
self.head_dim = head_dim = args.hidden_size // n_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
|
|
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
|
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
|
|
if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]:
|
|
self.rope = SuScaledRotaryEmbedding(
|
|
head_dim,
|
|
base=args.rope_theta,
|
|
max_position_embeddings=args.max_position_embeddings,
|
|
original_max_position_embeddings=args.original_max_position_embeddings,
|
|
short_factor=args.rope_scaling["short_factor"],
|
|
long_factor=args.rope_scaling["long_factor"],
|
|
)
|
|
else:
|
|
rope_scale = 1.0
|
|
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
|
assert isinstance(args.rope_scaling["factor"], float)
|
|
rope_scale = 1 / args.rope_scaling["factor"]
|
|
self.rope = nn.RoPE(
|
|
head_dim,
|
|
traditional=args.rope_traditional,
|
|
base=args.rope_theta,
|
|
scale=rope_scale,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
qkv = self.qkv_proj(x)
|
|
query_pos = self.n_heads * self.head_dim
|
|
queries, keys, values = mx.split(
|
|
qkv, [query_pos, query_pos + self.n_kv_heads * self.head_dim], axis=-1
|
|
)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
queries = self.rope(queries, offset=cache.offset)
|
|
keys = self.rope(keys, offset=cache.offset)
|
|
keys, values = cache.update_and_fetch(keys, values)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
)
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.o_proj(output)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, dim, hidden_dim):
|
|
super().__init__()
|
|
self.gate_up_proj = nn.Linear(dim, 2 * hidden_dim, bias=False)
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
x = self.gate_up_proj(x)
|
|
gate, x = mx.split(x, 2, axis=-1)
|
|
return self.down_proj(nn.silu(gate) * x)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_attention_heads = args.num_attention_heads
|
|
self.hidden_size = args.hidden_size
|
|
self.self_attn = Attention(args)
|
|
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
|
args.hidden_size, eps=args.rms_norm_eps
|
|
)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Any] = None,
|
|
) -> mx.array:
|
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
h = x + r
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
out = h + r
|
|
return out
|
|
|
|
|
|
class Phi3Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.vocab_size = args.vocab_size
|
|
self.num_hidden_layers = args.num_hidden_layers
|
|
assert self.vocab_size > 0
|
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
h = self.embed_tokens(inputs)
|
|
|
|
mask = create_attention_mask(h, cache)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
h = layer(h, mask, c)
|
|
|
|
return self.norm(h)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.model_type = args.model_type
|
|
self.model = Phi3Model(args)
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
self.args = args
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
cache=None,
|
|
):
|
|
out = self.model(inputs, cache)
|
|
return self.lm_head(out)
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.layers
|