mlx-examples/llms/mlx_lm/models/phi3.py
Awni Hannun fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00

205 lines
6.8 KiB
Python

# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
from .su_rope import SuScaledRotaryEmbedding
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
num_key_value_heads: Optional[int] = None
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
max_position_embeddings: int = 131072
original_max_position_embeddings: int = 4096
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
required_keys = {"long_factor", "type"}
if not all(key in self.rope_scaling for key in required_keys):
raise ValueError(f"rope_scaling must contain keys {required_keys}")
if self.rope_scaling["type"] not in ["longrope", "su", "linear"]:
print(
"[WARNING] rope_scaling 'type' currently only supports 'linear', 'su', and 'longrope'; setting rope scaling to false."
)
self.rope_scaling = None
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
assert args.num_key_value_heads is not None
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.num_hidden_layers = args.num_hidden_layers
self.head_dim = head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]:
self.rope = SuScaledRotaryEmbedding(
head_dim,
base=args.rope_theta,
max_position_embeddings=args.max_position_embeddings,
original_max_position_embeddings=args.original_max_position_embeddings,
short_factor=args.rope_scaling["short_factor"],
long_factor=args.rope_scaling["long_factor"],
)
else:
rope_scale = 1.0
if args.rope_scaling and args.rope_scaling["type"] == "linear":
assert isinstance(args.rope_scaling["factor"], float)
rope_scale = 1 / args.rope_scaling["factor"]
self.rope = nn.RoPE(
head_dim,
traditional=args.rope_traditional,
base=args.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
qkv = self.qkv_proj(x)
query_pos = self.n_heads * self.head_dim
queries, keys, values = mx.split(
qkv, [query_pos, query_pos + self.n_kv_heads * self.head_dim], axis=-1
)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_up_proj = nn.Linear(dim, 2 * hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
def __call__(self, x) -> mx.array:
x = self.gate_up_proj(x)
gate, x = mx.split(x, 2, axis=-1)
return self.down_proj(nn.silu(gate) * x)
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class Phi3Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.model = Phi3Model(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
self.args = args
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
return self.lm_head(out)
@property
def layers(self):
return self.model.layers