mlx-examples/llms/mlx_lm/models/stablelm.py
Awni Hannun fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00

209 lines
6.6 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import math
from dataclasses import dataclass
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
vocab_size: int
hidden_size: int
num_attention_heads: int
num_hidden_layers: int
num_key_value_heads: int
intermediate_size: int
rope_theta: float
use_qkv_bias: bool
partial_rotary_factor: float
layer_norm_eps: float
use_parallel_residual: bool = False
qk_layernorm: bool = False
class LayerNormPerHead(nn.Module):
def __init__(self, head_dim, num_heads, eps):
super().__init__()
self.norms = [
nn.LayerNorm(head_dim, eps=eps, bias=False) for _ in range(num_heads)
]
self.eps = eps
def __call__(self, x):
w = mx.stack([n.weight for n in self.norms])
return w * mx.fast.layer_norm(x, None, None, self.eps)
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.rope_theta = config.rope_theta
self.partial_rotary_factor = config.partial_rotary_factor
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias
)
self.k_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.use_qkv_bias,
)
self.v_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.use_qkv_bias,
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self.rope = nn.RoPE(
int(self.partial_rotary_factor * self.head_dim),
traditional=False,
base=self.rope_theta,
)
self.qk_layernorm = config.qk_layernorm
if self.qk_layernorm:
self.q_layernorm = LayerNormPerHead(
self.head_dim, self.num_heads, eps=config.layer_norm_eps
)
self.k_layernorm = LayerNormPerHead(
self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps
)
def __call__(self, x, mask=None, cache=None):
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Extract some shapes
B, L, D = queries.shape
queries = queries.reshape(B, L, self.num_heads, -1)
keys = keys.reshape(B, L, self.num_key_value_heads, -1)
if self.qk_layernorm:
queries = self.q_layernorm(queries)
keys = self.k_layernorm(keys)
queries = queries.transpose(0, 2, 1, 3)
keys = keys.transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
0, 2, 1, 3
)
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=scale, mask=mask
).astype(values.dtype)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.self_attn = Attention(config=config)
self.mlp = MLP(config.hidden_size, config.intermediate_size)
self.input_layernorm = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
)
self.use_parallel_residual = config.use_parallel_residual
if not self.use_parallel_residual:
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
)
def __call__(self, x, mask, cache):
h = self.input_layernorm(x)
r = self.self_attn(h, mask, cache)
if self.use_parallel_residual:
out = x + r + self.mlp(h)
else:
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class StableLM(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [DecoderLayer(config) for i in range(config.num_hidden_layers)]
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def __call__(self, x, mask, cache):
x = self.embed_tokens(x)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
x = layer(x, mask, cache=c)
return self.norm(x)
class Model(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.model_type = config.model_type
self.model = StableLM(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.args = config
def __call__(
self,
x: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
mask = create_attention_mask(x, cache)
y = self.model(x, mask, cache)
return self.lm_head(y)
@property
def layers(self):
return self.model.layers