mlx-examples/llms/tests/test_prompt_cache.py
Awni Hannun fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00

221 lines
7.9 KiB
Python

# Copyright © 2024 Apple Inc.
import os
import tempfile
import unittest
import mlx.core as mx
from mlx_lm.models.cache import (
KVCache,
MambaCache,
RotatingKVCache,
load_prompt_cache,
make_prompt_cache,
save_prompt_cache,
trim_prompt_cache,
)
from mlx_lm.utils import generate_step, load
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
class TestPromptCache(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.test_dir_fid = tempfile.TemporaryDirectory()
cls.test_dir = cls.test_dir_fid.name
@classmethod
def tearDownClass(cls):
cls.test_dir_fid.cleanup()
def test_save_load(self):
cache = [KVCache() for _ in range(4)]
for c in cache:
x = mx.random.uniform(shape=(1, 8, 10, 4))
c.update_and_fetch(x, x)
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
save_prompt_cache(cache_file, cache)
loaded_cache = load_prompt_cache(cache_file)
self.assertTrue(len(cache), len(loaded_cache))
for c, lc in zip(cache, loaded_cache):
self.assertEqual(c.offset, lc.offset)
self.assertTrue(mx.array_equal(c.state[0], lc.state[0]))
self.assertTrue(mx.array_equal(c.state[1], lc.state[1]))
# Test with metadata
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
metadata = {"a": "b", "c": "d"}
save_prompt_cache(cache_file, cache, metadata)
_, loaded_metadata = load_prompt_cache(cache_file, return_metadata=True)
self.assertEqual(metadata, loaded_metadata)
def test_save_load_rotating_cache(self):
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
# Test with rotating cache
cache = [RotatingKVCache(max_size=8, keep=2) for _ in range(4)]
for c in cache:
x = mx.random.uniform(shape=(1, 8, 10, 4))
c.update_and_fetch(x, x)
save_prompt_cache(cache_file, cache)
loaded_cache = load_prompt_cache(cache_file)
self.assertTrue(len(cache), len(loaded_cache))
for c, lc in zip(cache, loaded_cache):
self.assertEqual(c.offset, lc.offset)
self.assertEqual(c.keep, lc.keep)
self.assertEqual(c.max_size, lc.max_size)
self.assertEqual(c.step, lc.step)
self.assertTrue(mx.array_equal(c.state[0], lc.state[0]))
self.assertTrue(mx.array_equal(c.state[1], lc.state[1]))
# Do a couple single token updates to get a rotation
for _ in range(2):
for c in cache:
x = mx.random.uniform(shape=(1, 8, 1, 4))
c.update_and_fetch(x, x)
save_prompt_cache(cache_file, cache)
loaded_cache = load_prompt_cache(cache_file)
for c, lc in zip(cache, loaded_cache):
x = mx.random.uniform(shape=(1, 8, 1, 4))
k, v = c.update_and_fetch(x, x)
lk, lv = lc.update_and_fetch(x, x)
self.assertEqual(c.offset, lc.offset)
self.assertTrue(mx.array_equal(k, lk))
self.assertTrue(mx.array_equal(v, lv))
def test_save_load_mixed_cache(self):
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
cache = [MambaCache(), KVCache(), RotatingKVCache(8), MambaCache()]
for c in cache:
if isinstance(c, MambaCache):
c[0] = mx.random.uniform(shape=(4, 4, 4))
c[1] = mx.random.uniform(shape=(4, 4, 4))
else:
x = mx.random.uniform(shape=(4, 4, 7, 4))
y = mx.random.uniform(shape=(4, 4, 7, 4))
c.update_and_fetch(x, y)
save_prompt_cache(cache_file, cache)
loaded_cache = load_prompt_cache(cache_file)
for c, lc in zip(cache, loaded_cache):
if isinstance(c, MambaCache):
self.assertTrue(mx.array_equal(c[0], lc[0]))
self.assertTrue(mx.array_equal(c[1], lc[1]))
else:
x = mx.random.uniform(shape=(4, 4, 1, 4))
y = mx.random.uniform(shape=(4, 4, 1, 4))
k, v = c.update_and_fetch(x, y)
lk, lv = lc.update_and_fetch(x, y)
self.assertEqual(c.offset, lc.offset)
self.assertTrue(mx.array_equal(k, lk))
self.assertTrue(mx.array_equal(v, lv))
def test_cache_with_generate(self):
model, tokenizer = load(HF_MODEL_PATH)
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
results = zip(range(4), generate_step(prompt, model))
toks, all_logits = zip(*(r[1] for r in results))
prompt_cache = make_prompt_cache(model)
i = 0
for _, (tok, logits) in zip(
range(2), generate_step(prompt, model, prompt_cache=prompt_cache)
):
self.assertEqual(tok, toks[i])
self.assertTrue(mx.allclose(logits, all_logits[i]))
i += 1
for _, (tok, logits) in zip(
range(1),
generate_step(mx.array([toks[i]]), model, prompt_cache=prompt_cache),
):
i += 1
self.assertEqual(tok, toks[i])
self.assertTrue(mx.allclose(logits, all_logits[i]))
def test_trim_cache(self):
cache = [KVCache() for _ in range(2)]
for c in cache:
x = mx.random.uniform(shape=(1, 8, 10, 4))
c.update_and_fetch(x, x)
# Trim
num_trimmed = trim_prompt_cache(cache, 7)
self.assertEqual(num_trimmed, 7)
# Trim more tokens than remain
num_trimmed = trim_prompt_cache(cache, 4)
self.assertEqual(num_trimmed, 3)
# Can't trim mamba cache
cache = [MambaCache() for _ in range(2)]
for c in cache:
c.state = mx.zeros((5, 5))
num_trimmed = trim_prompt_cache(cache, 7)
self.assertEqual(num_trimmed, 0)
# All cache's have to be trimmable
cache = [MambaCache(), KVCache()]
cache[0].state = mx.zeros((5, 5))
x = mx.random.uniform(shape=(1, 8, 10, 4))
cache[1].update_and_fetch(x, x)
num_trimmed = trim_prompt_cache(cache, 1)
self.assertEqual(num_trimmed, 0)
cache = [RotatingKVCache(max_size=6) for _ in range(2)]
for c in cache:
x = mx.random.uniform(shape=(1, 8, 5, 4))
c.update_and_fetch(x, x)
num_trimmed = trim_prompt_cache(cache, 4)
self.assertEqual(num_trimmed, 4)
# Can't trim fixed-size KV cache after processing
# more than max_kv_size tokens
for c in cache:
x = mx.random.uniform(shape=(1, 8, 10, 4))
c.update_and_fetch(x, x)
num_trimmed = trim_prompt_cache(cache, 4)
self.assertEqual(num_trimmed, 0)
def test_trim_cache_with_generate(self):
model, tokenizer = load(HF_MODEL_PATH)
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
prompt_cache = make_prompt_cache(model)
# Generate one token so we process the full prompt
last_tok, _ = next(generate_step(prompt, model, prompt_cache=prompt_cache))
last_tok = mx.array([last_tok])
# Generate two more tokens
results = zip(
range(2), generate_step(last_tok, model, prompt_cache=prompt_cache)
)
toks, all_logits = zip(*(r[1] for r in results))
# To get back to the cache just after processing the prompt,
# trim by 3 tokens
trim_prompt_cache(prompt_cache, 3)
# Generate the same thing again
results = zip(
range(2), generate_step(last_tok, model, prompt_cache=prompt_cache)
)
second_toks, second_all_logits = zip(*(r[1] for r in results))
self.assertEqual(toks, second_toks)
self.assertTrue(
all(mx.allclose(l, l2) for l, l2 in zip(all_logits, second_all_logits))
)
if __name__ == "__main__":
unittest.main()