mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00

* Su-RoPE * nits * Update su_rope.py * Update su_rope.py Per GPT4: "The error TypeError: 'type' object is not subscriptable is caused by using the type hint list[float] in a version of Python that does not support it. This syntax is only available in Python 3.9 and later." * Ran isort --------- Co-authored-by: Awni Hannun <awni@apple.com>
80 lines
3.2 KiB
Python
80 lines
3.2 KiB
Python
import math
|
|
from typing import List, Union
|
|
|
|
import mlx.core as mx
|
|
|
|
|
|
class SuScaledRotaryEmbedding:
|
|
def __init__(
|
|
self,
|
|
dims: int,
|
|
traditional: bool = False,
|
|
base: float = 10000.0,
|
|
scale: float = 1.0,
|
|
max_position_embeddings: int = 131072,
|
|
original_max_position_embeddings: int = 4096,
|
|
short_factor: Union[List[float], float] = 1.0,
|
|
long_factor: Union[List[float], float] = 1.0,
|
|
):
|
|
"""
|
|
Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
|
|
|
|
Args:
|
|
dims (int): The feature dimensions to be rotated.
|
|
traditional (bool, optional): Unused. Default: ``False``.
|
|
base (int, optional): Base for the exponential scaling.
|
|
scale (float, optional): The scale used to scale the positions.
|
|
Default: ``1.0``.
|
|
max_position_embeddings (int, optional): The maximum sequence
|
|
length that this model was trained with. This is used to determine
|
|
the size of the original RoPE embeddings when using long scaling.
|
|
Default: ``131072``.
|
|
original_max_position_embeddings (int, optional): The maximum
|
|
sequence length that this model was trained with. This is used to
|
|
determine the size of the original RoPE embeddings when using long
|
|
scaling. Default: ``4096``.
|
|
short_factor (float or list[float], optional): List of scaling
|
|
factors for sequences of length lesser than
|
|
``original_max_position_embeddings``. Default: ``1.0``.
|
|
long_factor (float or list[float], optional): List of scaling
|
|
factors for sequences of length greater than
|
|
``original_max_position_embeddings``. Default: ``1.0``.
|
|
"""
|
|
self.inv_freq_short = 1.0 / (
|
|
mx.array(short_factor, dtype=mx.float32)
|
|
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
|
)
|
|
self.inv_freq_long = 1.0 / (
|
|
scale
|
|
* mx.array(long_factor, dtype=mx.float32)
|
|
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
|
)
|
|
self.original_max_position_embeddings = original_max_position_embeddings
|
|
self.scaling_factor = math.sqrt(
|
|
1
|
|
+ math.log(max_position_embeddings / original_max_position_embeddings)
|
|
/ math.log(original_max_position_embeddings)
|
|
)
|
|
|
|
def _get_cos_sin(self, offset, L):
|
|
position_ids = mx.arange(offset, offset + L, dtype=mx.float32)
|
|
inv_freq = (
|
|
self.inv_freq_long
|
|
if (offset + L) > self.original_max_position_embeddings
|
|
else self.inv_freq_short
|
|
)
|
|
freqs = position_ids[:, None] * inv_freq[None, :]
|
|
emb = mx.concatenate([freqs, freqs], axis=-1)
|
|
cos = mx.cos(emb) * self.scaling_factor
|
|
sin = mx.sin(emb) * self.scaling_factor
|
|
return cos, sin
|
|
|
|
def __call__(self, x, offset: int = 0):
|
|
def _rotate_half(_x):
|
|
midpoint = _x.shape[-1] // 2
|
|
x1, x2 = _x[..., :midpoint], _x[..., midpoint:]
|
|
return mx.concatenate([-x2, x1], axis=-1)
|
|
|
|
cos, sin = self._get_cos_sin(offset, x.shape[2])
|
|
return (x * cos) + (_rotate_half(x) * sin)
|