mlx/benchmarks/python/sdpa_vector_bench.py

96 lines
2.6 KiB
Python
Raw Normal View History

import argparse
import math
import mlx.core as mx
from time_utils import time_fn
2025-04-22 15:19:11 +08:00
L = 1024
H = 32
2024-11-19 09:31:53 +08:00
H_k = H // 4
D = 128
V = 128
2024-11-19 09:31:53 +08:00
dtype = mx.float16
loops = 10
def upproject(x, w):
if w is None:
return x
else:
return x @ w.T
def attention(q, k, v, mask=None, w=None):
2024-11-19 09:31:53 +08:00
def _sdpa(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
_, _, _, V = v.shape
2024-11-19 09:31:53 +08:00
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
if mask is not None:
m = mx.broadcast_to(mask, (B, Hq, L, S)).reshape(B, Hk, Hq // Hk, L, S)
s = mx.where(m, s, mx.finfo(s.dtype).min)
2024-11-19 09:31:53 +08:00
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, V)
2024-11-19 09:31:53 +08:00
for i in range(loops):
q = _sdpa(q, k, v)
q = upproject(q, w)
2024-11-19 09:31:53 +08:00
return q
def sdpa(q, k, v, mask=None, w=None):
2024-11-19 09:31:53 +08:00
for i in range(loops):
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
q = upproject(q, w)
2024-11-19 09:31:53 +08:00
return q
def time_self_attention_primitives():
mx.random.seed(3)
2024-11-19 09:31:53 +08:00
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mx.eval(q, k, v, w)
time_fn(attention, q, k, v, w=w)
def time_self_attention_sdpa():
mx.random.seed(3)
2024-11-19 09:31:53 +08:00
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mx.eval(q, k, v, w)
time_fn(sdpa, q, k, v, w=w)
def time_self_attention_sdpa_with_mask():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
mask = mx.full((L,), True)
mask[L // 2 :] = False
mx.eval(q, k, v, mask, w)
def sdpa_mask(*args):
return sdpa(*args, mask=mask, w=w)
def attention_mask(*args):
return attention(*args, mask=mask, w=w)
time_fn(attention_mask, q, k, v)
time_fn(sdpa_mask, q, k, v)
if __name__ == "__main__":
time_self_attention_sdpa()
time_self_attention_primitives()
time_self_attention_sdpa_with_mask()