mlx/python/src/transforms.cpp

810 lines
28 KiB
C++
Raw Normal View History

// Copyright © 2023-2024 Apple Inc.
2023-11-30 02:52:08 +08:00
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <algorithm>
#include <fstream>
#include <numeric>
#include <sstream>
#include "mlx/array.h"
#include "mlx/graph_utils.h"
#include "mlx/transforms.h"
#include "mlx/transforms_impl.h"
namespace py = pybind11;
using namespace py::literals;
using namespace mlx::core;
using IntOrVec = std::variant<int, std::vector<int>>;
using StrOrVec = std::variant<std::string, std::vector<std::string>>;
template <typename T>
std::vector<T> to_vector(const std::variant<T, std::vector<T>>& v) {
std::vector<T> vals;
if (auto pv = std::get_if<T>(&v); pv) {
vals.push_back(*pv);
} else {
vals = std::get<std::vector<T>>(v);
}
return vals;
}
void tree_visit(py::object tree, std::function<void(py::handle)> visitor) {
std::function<void(py::handle)> recurse;
recurse = [&](py::handle subtree) {
if (py::isinstance<py::list>(subtree) ||
py::isinstance<py::tuple>(subtree)) {
for (auto item : subtree) {
recurse(item);
}
} else if (py::isinstance<py::dict>(subtree)) {
for (auto item : py::cast<py::dict>(subtree)) {
recurse(item.second);
}
} else {
visitor(subtree);
}
};
recurse(tree);
}
template <typename T, typename U, typename V>
void validate_subtrees(const std::vector<py::object>& subtrees) {
int len = py::cast<T>(subtrees[0]).size();
for (auto& subtree : subtrees) {
if ((py::isinstance<T>(subtree) && py::cast<T>(subtree).size() != len) ||
py::isinstance<U>(subtree) || py::isinstance<V>(subtree)) {
throw std::invalid_argument(
"[tree_map] Additional input tree is not a valid prefix of the first tree.");
}
}
}
py::object tree_map(
const std::vector<py::object>& trees,
std::function<py::object(const std::vector<py::object>&)> transform) {
std::function<py::object(const std::vector<py::object>&)> recurse;
recurse = [&](const std::vector<py::object>& subtrees) {
if (py::isinstance<py::list>(subtrees[0])) {
py::list l;
std::vector<py::object> items(subtrees.size());
validate_subtrees<py::list, py::tuple, py::dict>(subtrees);
for (int i = 0; i < py::cast<py::list>(subtrees[0]).size(); ++i) {
for (int j = 0; j < subtrees.size(); ++j) {
if (py::isinstance<py::list>(subtrees[j])) {
items[j] = py::cast<py::list>(subtrees[j])[i];
} else {
items[j] = subtrees[j];
}
}
l.append(recurse(items));
}
return py::cast<py::object>(l);
} else if (py::isinstance<py::tuple>(subtrees[0])) {
// Check the rest of the subtrees
std::vector<py::object> items(subtrees.size());
int len = py::cast<py::tuple>(subtrees[0]).size();
py::tuple l(len);
validate_subtrees<py::tuple, py::list, py::dict>(subtrees);
for (int i = 0; i < len; ++i) {
for (int j = 0; j < subtrees.size(); ++j) {
if (py::isinstance<py::tuple>(subtrees[j])) {
items[j] = py::cast<py::tuple>(subtrees[j])[i];
} else {
items[j] = subtrees[j];
}
}
l[i] = recurse(items);
}
return py::cast<py::object>(l);
} else if (py::isinstance<py::dict>(subtrees[0])) {
std::vector<py::object> items(subtrees.size());
validate_subtrees<py::dict, py::list, py::tuple>(subtrees);
py::dict d;
for (auto item : py::cast<py::dict>(subtrees[0])) {
for (int j = 0; j < subtrees.size(); ++j) {
if (py::isinstance<py::dict>(subtrees[j])) {
auto subdict = py::cast<py::dict>(subtrees[j]);
if (!subdict.contains(item.first)) {
throw std::invalid_argument(
"[tree_map] Tree is not a valid prefix tree of the first tree.");
}
items[j] = subdict[item.first];
} else {
items[j] = subtrees[j];
}
}
d[item.first] = recurse(items);
}
return py::cast<py::object>(d);
} else {
return transform(subtrees);
}
};
return recurse(trees);
}
py::object tree_map(
py::object tree,
std::function<py::object(py::handle)> transform) {
return tree_map({tree}, [&](std::vector<py::object> inputs) {
return transform(inputs[0]);
});
}
std::vector<array> tree_flatten(py::object tree, bool strict = true) {
std::vector<array> flat_tree;
tree_visit(tree, [&](py::handle obj) {
if (py::isinstance<array>(obj)) {
flat_tree.push_back(py::cast<array>(obj));
} else if (strict) {
throw std::invalid_argument("Argument is not an array");
}
});
return flat_tree;
}
py::object tree_unflatten(
py::object tree,
const std::vector<array>& values,
int index = 0) {
return tree_map(tree, [&](py::handle obj) {
if (py::isinstance<array>(obj)) {
return py::cast(values[index++]);
} else {
return py::cast<py::object>(obj);
}
});
}
py::object tree_unflatten_none(
py::object tree,
const std::vector<array>& values,
int index = 0) {
return tree_map(tree, [&](py::handle obj) {
if (py::isinstance<py::none>(obj)) {
return py::cast(values[index++]);
} else {
return py::cast<py::object>(obj);
}
});
}
2023-11-30 02:52:08 +08:00
auto validate_argnums_argnames(
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
auto vec_names = to_vector(argnames);
if (!argnums.has_value()) {
// argnums was not provided and argnames was empty
if (vec_names.empty()) {
return std::make_pair(std::vector<int>{0}, vec_names);
} else {
return std::make_pair(std::vector<int>{}, vec_names);
}
}
return std::make_pair(to_vector(*argnums), vec_names);
}
auto py_value_and_grad(
const py::function& fun,
std::vector<int> argnums,
std::vector<std::string> argnames,
const std::string& error_msg_tag,
bool scalar_func_only) {
// Sanitize argnums
if (argnums.size() == 0 && argnames.size() == 0) {
throw std::invalid_argument(
error_msg_tag + " Gradient wrt no argument requested");
}
if (argnums.size() > 0) {
std::sort(argnums.begin(), argnums.end());
if (argnums[0] < 0) {
std::ostringstream msg;
msg << error_msg_tag
<< " Can't compute the gradient of negative argument index "
<< argnums[0];
throw std::invalid_argument(msg.str());
}
}
return [fun, argnums, argnames, error_msg_tag, scalar_func_only](
const py::args& args, const py::kwargs& kwargs) {
// Sanitize the input
if (argnums.size() > 0 && argnums.back() >= args.size()) {
std::ostringstream msg;
msg << error_msg_tag << " Can't compute the gradient of argument index "
<< argnums.back() << " because the function is called with only "
<< args.size() << " arguments.";
throw std::invalid_argument(msg.str());
}
for (auto& key : argnames) {
if (!kwargs.contains(key)) {
std::ostringstream msg;
msg << error_msg_tag
<< " Can't compute the gradient of keyword argument '" << key
<< "' because the function is called with the "
<< "following keyword arguments {";
for (auto item : kwargs) {
msg << item.first.cast<std::string>() << ",";
}
msg << "}";
throw std::invalid_argument(msg.str());
}
}
// Collect the arrays
std::vector<array> arrays;
std::vector<int> counts(1, 0);
for (auto i : argnums) {
auto argsi = tree_flatten(args[i]);
arrays.insert(arrays.end(), argsi.begin(), argsi.end());
counts.push_back(argsi.size());
}
for (auto& key : argnames) {
auto argsk = tree_flatten(kwargs[key.c_str()]);
arrays.insert(arrays.end(), argsk.begin(), argsk.end());
counts.push_back(argsk.size());
}
std::partial_sum(counts.cbegin(), counts.cend(), counts.begin());
std::vector<int> gradient_indices(arrays.size());
std::iota(gradient_indices.begin(), gradient_indices.end(), 0);
// value_out will hold the output of the python function in order to be
// able to reconstruct the python tree of extra return values
py::object py_value_out;
auto value_and_grads = value_and_grad(
[&fun,
&args,
&kwargs,
&argnums,
&argnames,
&counts,
&py_value_out,
&error_msg_tag,
scalar_func_only](const std::vector<array>& a) {
// Copy the arguments
py::args args_cpy = py::tuple(args.size());
py::kwargs kwargs_cpy = py::kwargs();
int j = 0;
for (int i = 0; i < args.size(); ++i) {
if (j < argnums.size() && i == argnums[j]) {
args_cpy[i] = tree_unflatten(args[i], a, counts[j]);
j++;
} else {
args_cpy[i] = args[i];
}
}
for (auto& key : argnames) {
kwargs_cpy[key.c_str()] =
tree_unflatten(kwargs[key.c_str()], a, counts[j]);
j++;
}
for (auto item : kwargs) {
if (kwargs_cpy.contains(item.first)) {
continue;
}
kwargs_cpy[item.first] = item.second;
}
// Call the python function
py_value_out = fun(*args_cpy, **kwargs_cpy);
// Validate the return value of the python function
if (!py::isinstance<array>(py_value_out)) {
if (scalar_func_only) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be a "
<< "scalar array; but " << py_value_out.get_type()
<< " was returned.";
throw std::invalid_argument(msg.str());
}
if (!py::isinstance<py::tuple>(py_value_out)) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be either a "
<< "scalar array or a tuple with the first value being a "
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but "
<< py_value_out.get_type() << " was returned.";
throw std::invalid_argument(msg.str());
}
py::tuple ret = py::cast<py::tuple>(py_value_out);
if (ret.size() == 0) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be either a "
<< "scalar array or a non-empty tuple. The first value should be a "
<< "scalar array and the rest can be anything. Instead, "
<< "we got an empty tuple.";
throw std::invalid_argument(msg.str());
}
if (!py::isinstance<array>(ret[0])) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be either a "
<< "scalar array or a tuple with the first value being a "
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but it "
<< "was a tuple with the first value being of type "
<< ret[0].get_type() << " .";
throw std::invalid_argument(msg.str());
}
}
return tree_flatten(py_value_out, false);
},
gradient_indices)(arrays);
auto value = value_and_grads.first;
auto gradients = value_and_grads.second;
// Put the gradients back in their container.
// We have the following cases:
//
// 1. Single python positional argument has a gradient (eg argnums=[0])
// 2. Many python positional arguments have gradients (eg argnums=[0, 1])
// 3. A python keyword argument has gradients
//
// In case 1 we return the original python variable but with the gradients.
// In case 2 we return a tuple of the above.
// In case 3 we return a tuple containing a tuple and dict (sth like
// (tuple(), dict(x=mx.array(5))) ).
py::object positional_grads;
py::object keyword_grads;
py::object py_grads;
// Collect the gradients for the positional arguments
if (argnums.size() == 1) {
positional_grads = tree_unflatten(args[argnums[0]], gradients, counts[0]);
} else if (argnums.size() > 1) {
py::tuple grads_(argnums.size());
for (int i = 0; i < argnums.size(); i++) {
grads_[i] = tree_unflatten(args[argnums[i]], gradients, counts[i]);
}
positional_grads = py::cast<py::object>(grads_);
} else {
positional_grads = py::none();
}
// No keyword argument gradients so return the tuple of gradients
if (argnames.size() == 0) {
py_grads = positional_grads;
} else {
py::dict grads_;
for (int i = 0; i < argnames.size(); i++) {
auto& k = argnames[i];
grads_[k.c_str()] = tree_unflatten(
kwargs[k.c_str()], gradients, counts[i + argnums.size()]);
}
keyword_grads = py::cast<py::object>(grads_);
py_grads =
py::cast<py::object>(py::make_tuple(positional_grads, keyword_grads));
}
// Put the values back in the container
py::object return_value = tree_unflatten(py_value_out, value);
return std::make_pair(return_value, py_grads);
};
}
auto py_vmap(
const py::function& fun,
const py::object& in_axes,
const py::object& out_axes) {
return [fun, in_axes, out_axes](const py::args& args) {
auto axes_to_flat_tree = [](const py::object& tree,
const py::object& axes) {
auto tree_axes = tree_map(
{tree, axes},
[](const std::vector<py::object>& inputs) { return inputs[1]; });
std::vector<int> flat_axes;
tree_visit(tree_axes, [&flat_axes](py::handle obj) {
if (obj.is_none()) {
flat_axes.push_back(-1);
} else if (py::isinstance<py::int_>(obj)) {
flat_axes.push_back(py::cast<int>(py::cast<py::int_>(obj)));
} else {
throw std::invalid_argument("[vmap] axis must be int or None.");
}
});
return flat_axes;
};
// Inputs must be array or tree of arrays
auto inputs = tree_flatten(args, true);
auto flat_in_axes = axes_to_flat_tree(args, in_axes);
// py_value_out will hold the output of the python function in order to be
// able to reconstruct the python tree of extra return values
py::object py_outputs;
auto vmap_fn =
[&fun, &args, &inputs, &py_outputs](const std::vector<array>& a) {
// Call the python function
py_outputs = fun(*tree_unflatten(args, a));
// Flatten the outputs
return tree_flatten(py_outputs, true);
};
auto [trace_inputs, trace_outputs] =
detail::vmap_trace(vmap_fn, inputs, flat_in_axes);
auto flat_out_axes = axes_to_flat_tree(py_outputs, out_axes);
// Perform the vmap
auto outputs = detail::vmap_replace(
inputs, trace_inputs, trace_outputs, flat_in_axes, flat_out_axes);
// Put the outputs back in the container
return tree_unflatten(py_outputs, outputs);
};
}
std::unordered_map<size_t, py::object>& tree_cache() {
// This map is used to Cache the tree structure of the outputs
static std::unordered_map<size_t, py::object> tree_cache_;
return tree_cache_;
}
struct PyCompiledFun {
py::function fun;
size_t fun_id;
PyCompiledFun(const py::function& fun)
: fun(fun), fun_id(reinterpret_cast<size_t>(fun.ptr())) {}
PyCompiledFun(const PyCompiledFun&) = delete;
PyCompiledFun& operator=(const PyCompiledFun&) = delete;
PyCompiledFun& operator=(PyCompiledFun&& other) = delete;
PyCompiledFun(PyCompiledFun&& other)
: fun(std::move(other.fun)), fun_id(reinterpret_cast<size_t>(fun.ptr())) {
other.fun_id = 0;
};
py::object operator()(const py::args& args) {
auto compile_fun = [this, &args](const std::vector<array>& a) {
// Call the python function
py::object py_outputs = this->fun(*tree_unflatten(args, a));
// Flatten the outputs
auto outputs = tree_flatten(py_outputs, true);
py_outputs =
tree_map(py_outputs, [](const py::handle& x) { return py::none(); });
tree_cache().insert({this->fun_id, py_outputs});
return outputs;
};
// Inputs must be array or tree of arrays
auto inputs = tree_flatten(args, true);
// Compile and call
auto outputs = detail::compile(compile_fun, fun_id)(inputs);
// Put the outputs back in the container
py::object py_outputs = tree_cache().at(fun_id);
return tree_unflatten_none(py_outputs, outputs);
};
~PyCompiledFun() {
tree_cache().erase(fun_id);
detail::compile_erase(fun_id);
}
};
2023-11-30 02:52:08 +08:00
void init_transforms(py::module_& m) {
py::options options;
options.disable_function_signatures();
2023-11-30 02:52:08 +08:00
m.def(
"eval",
[](const py::args& args) {
2023-11-30 02:52:08 +08:00
std::vector<array> arrays = tree_flatten(args);
2024-01-27 14:03:52 +08:00
{
py::gil_scoped_release nogil;
eval(arrays);
}
2023-11-30 02:52:08 +08:00
},
R"pbdoc(
eval(*args) -> None
2023-11-30 02:52:08 +08:00
Evaluate an :class:`array` or tree of :class:`array`.
Args:
*args (arrays or trees of arrays): Each argument can be a single array
or a tree of arrays. If a tree is given the nodes can be a Python
:class:`list`, :class:`tuple` or :class:`dict` but the leafs must all be
an :class:`array`.
)pbdoc");
m.def(
"jvp",
[](const py::function& fun,
const std::vector<array>& primals,
const std::vector<array>& tangents) {
auto vfun = [&fun](const std::vector<array>& primals) {
py::args args = py::tuple(primals.size());
for (int i = 0; i < primals.size(); ++i) {
args[i] = primals[i];
}
auto out = fun(*args);
if (py::isinstance<array>(out)) {
return std::vector<array>{py::cast<array>(out)};
} else {
return py::cast<std::vector<array>>(out);
}
};
return jvp(vfun, primals, tangents);
},
"fun"_a,
"primals"_a,
"tangents"_a,
R"pbdoc(
jvp(fun: function, primals: List[array], tangents: List[array]) -> Tuple[List[array], List[array]]
2023-11-30 02:52:08 +08:00
Compute the Jacobian-vector product.
This computes the product of the Jacobian of a function ``fun`` evaluated
at ``primals`` with the ``tangents``.
Args:
fun (function): A function which takes a variable number of :class:`array`
and returns a single :class:`array` or list of :class:`array`.
primals (list(array)): A list of :class:`array` at which to
evaluate the Jacobian.
tangents (list(array)): A list of :class:`array` which are the
"vector" in the Jacobian-vector product. The ``tangents`` should be the
same in number, shape, and type as the inputs of ``fun`` (i.e. the ``primals``).
Returns:
list(array): A list of the Jacobian-vector products which
is the same in number, shape, and type of the inputs to ``fun``.
)pbdoc");
m.def(
"vjp",
[](const py::function& fun,
const std::vector<array>& primals,
const std::vector<array>& cotangents) {
auto vfun = [&fun](const std::vector<array>& primals) {
py::args args = py::tuple(primals.size());
for (int i = 0; i < primals.size(); ++i) {
args[i] = primals[i];
}
auto out = fun(*args);
if (py::isinstance<array>(out)) {
return std::vector<array>{py::cast<array>(out)};
} else {
return py::cast<std::vector<array>>(out);
}
};
return vjp(vfun, primals, cotangents);
},
"fun"_a,
"primals"_a,
"cotangents"_a,
R"pbdoc(
vjp(fun: function, primals: List[array], cotangents: List[array]) -> Tuple[List[array], List[array]]
2023-11-30 02:52:08 +08:00
Compute the vector-Jacobian product.
Computes the product of the ``cotangents`` with the Jacobian of a
function ``fun`` evaluated at ``primals``.
Args:
fun (function): A function which takes a variable number of :class:`array`
and returns a single :class:`array` or list of :class:`array`.
primals (list(array)): A list of :class:`array` at which to
evaluate the Jacobian.
cotangents (list(array)): A list of :class:`array` which are the
"vector" in the vector-Jacobian product. The ``cotangents`` should be the
same in number, shape, and type as the outputs of ``fun``.
Returns:
list(array): A list of the vector-Jacobian products which
is the same in number, shape, and type of the outputs of ``fun``.
)pbdoc");
m.def(
"value_and_grad",
[](const py::function& fun,
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
auto [argnums_vec, argnames_vec] =
validate_argnums_argnames(argnums, argnames);
return py::cpp_function(py_value_and_grad(
fun, argnums_vec, argnames_vec, "[value_and_grad]", false));
},
"fun"_a,
"argnums"_a = std::nullopt,
"argnames"_a = std::vector<std::string>{},
R"pbdoc(
value_and_grad(fun: function, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> function
2023-11-30 02:52:08 +08:00
Returns a function which computes the value and gradient of ``fun``.
The function passed to :func:`value_and_grad` should return either
a scalar loss or a tuple in which the first element is a scalar
loss and the remaining elements can be anything.
.. code-block:: python
import mlx.core as mx
def mse(params, inputs, targets):
outputs = forward(params, inputs)
lvalue = (outputs - targets).square().mean()
return lvalue
# Returns lvalue, dlvalue/dparams
lvalue, grads = mx.value_and_grad(mse)(params, inputs, targets)
2023-11-30 02:52:08 +08:00
def lasso(params, inputs, targets, a=1.0, b=1.0):
outputs = forward(params, inputs)
mse = (outputs - targets).square().mean()
l1 = mx.abs(outputs - targets).mean()
loss = a*mse + b*l1
return loss, mse, l1
(loss, mse, l1), grads = mx.value_and_grad(lasso)(params, inputs, targets)
2023-11-30 02:52:08 +08:00
Args:
fun (function): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a scalar output :class:`array` or a tuple the first element
of which should be a scalar :class:`array`.
argnums (int or list(int), optional): Specify the index (or indices)
of the positional arguments of ``fun`` to compute the gradient
with respect to. If neither ``argnums`` nor ``argnames`` are
provided ``argnums`` defaults to ``0`` indicating ``fun``'s first
argument.
argnames (str or list(str), optional): Specify keyword arguments of
``fun`` to compute gradients with respect to. It defaults to [] so
no gradients for keyword arguments by default.
Returns:
function: A function which returns a tuple where the first element
is the output of `fun` and the second element is the gradients w.r.t.
the loss.
)pbdoc");
m.def(
"grad",
[](const py::function& fun,
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
auto [argnums_vec, argnames_vec] =
validate_argnums_argnames(argnums, argnames);
auto fn =
py_value_and_grad(fun, argnums_vec, argnames_vec, "[grad]", true);
return py::cpp_function(
[fn](const py::args& args, const py::kwargs& kwargs) {
return fn(args, kwargs).second;
});
},
"fun"_a,
"argnums"_a = std::nullopt,
"argnames"_a = std::vector<std::string>{},
R"pbdoc(
grad(fun: function, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> function
2023-11-30 02:52:08 +08:00
Returns a function which computes the gradient of ``fun``.
Args:
fun (function): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a scalar output :class:`array`.
argnums (int or list(int), optional): Specify the index (or indices)
of the positional arguments of ``fun`` to compute the gradient
with respect to. If neither ``argnums`` nor ``argnames`` are
provided ``argnums`` defaults to ``0`` indicating ``fun``'s first
argument.
argnames (str or list(str), optional): Specify keyword arguments of
``fun`` to compute gradients with respect to. It defaults to [] so
no gradients for keyword arguments by default.
Returns:
function: A function which has the same input arguments as ``fun`` and
returns the gradient(s).
)pbdoc");
m.def(
"vmap",
[](const py::function& fun,
const py::object& in_axes,
const py::object& out_axes) {
return py::cpp_function(py_vmap(fun, in_axes, out_axes));
},
"fun"_a,
"in_axes"_a = 0,
"out_axes"_a = 0,
R"pbdoc(
vmap(fun: function, in_axes: object = 0, out_axes: object = 0) -> function
2023-11-30 02:52:08 +08:00
Returns a vectorized version of ``fun``.
Args:
fun (function): A function which takes a variable number of
:class:`array` or a tree of :class:`array` and returns
a variable number of :class:`array` or a tree of :class:`array`.
in_axes (int, optional): An integer or a valid prefix tree of the
inputs to ``fun`` where each node specifies the vmapped axis. If
the value is ``None`` then the corresponding input(s) are not vmapped.
Defaults to ``0``.
out_axes (int, optional): An integer or a valid prefix tree of the
outputs of ``fun`` where each node specifies the vmapped axis. If
the value is ``None`` then the corresponding outputs(s) are not vmapped.
Defaults to ``0``.
Returns:
function: The vectorized function.
)pbdoc");
m.def(
"export_to_dot",
[](py::object file, const py::args& args) {
std::vector<array> arrays = tree_flatten(args);
if (py::isinstance<py::str>(file)) {
std::ofstream out(py::cast<std::string>(file));
export_to_dot(out, arrays);
} else if (py::hasattr(file, "write")) {
std::ostringstream out;
export_to_dot(out, arrays);
auto write = file.attr("write");
write(out.str());
} else {
throw std::invalid_argument(
"export_to_dot accepts file-like objects or strings to be used as filenames");
}
},
"file"_a);
m.def(
"compile",
[](const py::function& fun) {
return py::cpp_function(PyCompiledFun{fun});
},
"fun"_a,
R"pbdoc(
compile(fun: function) -> function
Returns a compiled function which produces the same output as ``fun``.
Args:
fun (function): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a variable number of :class:`array` or trees of :class:`array`.
Returns:
function: A compiled function which has the same input arguments
as ``fun`` and returns the the same output(s).
)pbdoc");
m.def(
"disable_compile",
&disable_compile,
R"pbdoc(
disable_compile() -> None
Globally disable compilation. Setting the environment variable
``MLX_DISABLE_COMPILE`` can also be used to disable compilation.
)pbdoc");
m.def(
"enable_compile",
&enable_compile,
R"pbdoc(
enable_compiler() -> None
Globally enable compilation. This will override the environment
variable ``MLX_DISABLE_COMPILE`` if set.
)pbdoc");
// Register static Python object cleanup before the interpreter exits
auto atexit = py::module_::import("atexit");
atexit.attr("register")(py::cpp_function([]() { tree_cache().clear(); }));
2023-11-30 02:52:08 +08:00
}