2025-01-31 14:43:37 -08:00
|
|
|
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
|
|
|
|
|
|
#include <Accelerate/Accelerate.h>
|
|
|
|
|
|
|
|
|
|
#include "mlx/array.h"
|
|
|
|
|
#include "mlx/backend/common/utils.h"
|
2025-02-03 15:58:02 -08:00
|
|
|
#include "mlx/backend/cpu/gemm.h"
|
2025-01-31 14:43:37 -08:00
|
|
|
#include "mlx/dtype.h"
|
|
|
|
|
|
|
|
|
|
namespace mlx::core {
|
|
|
|
|
|
|
|
|
|
BNNSDataType to_bnns_dtype(Dtype mlx_dtype) {
|
|
|
|
|
uint32_t size_bits = size_of(mlx_dtype) * 8;
|
|
|
|
|
switch (kindof(mlx_dtype)) {
|
|
|
|
|
case Dtype::Kind::b:
|
|
|
|
|
return BNNSDataTypeBoolean;
|
|
|
|
|
case Dtype::Kind::u:
|
|
|
|
|
return BNNSDataType(BNNSDataTypeUIntBit | size_bits);
|
|
|
|
|
case Dtype::Kind::i:
|
|
|
|
|
return BNNSDataType(BNNSDataTypeIntBit | size_bits);
|
|
|
|
|
case Dtype::Kind::f:
|
|
|
|
|
return BNNSDataType(BNNSDataTypeFloatBit | size_bits);
|
|
|
|
|
case Dtype::Kind::V:
|
|
|
|
|
return BNNSDataTypeBFloat16;
|
|
|
|
|
case Dtype::Kind::c:
|
|
|
|
|
throw std::invalid_argument("BNNS does not support complex types");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void matmul_bnns(
|
|
|
|
|
const array& a,
|
|
|
|
|
const array& b,
|
|
|
|
|
array& out,
|
|
|
|
|
bool a_transposed,
|
|
|
|
|
bool b_transposed,
|
|
|
|
|
size_t lda,
|
|
|
|
|
size_t ldb,
|
|
|
|
|
float alpha,
|
|
|
|
|
float beta) {
|
|
|
|
|
size_t M = a.shape(-2);
|
|
|
|
|
size_t N = b.shape(-1);
|
|
|
|
|
size_t K = a.shape(-1);
|
|
|
|
|
|
|
|
|
|
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
|
|
|
|
|
|
|
|
|
|
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
|
|
|
|
/* float alpha = */ alpha,
|
|
|
|
|
/* float beta = */ beta,
|
|
|
|
|
/* bool transA = */ a_transposed,
|
|
|
|
|
/* bool transB = */ b_transposed,
|
|
|
|
|
/* bool quadratic = */ false,
|
|
|
|
|
/* bool a_is_weights = */ false,
|
|
|
|
|
/* bool b_is_weights = */ false,
|
|
|
|
|
/* BNNSNDArrayDescriptor iA_desc = */
|
|
|
|
|
BNNSNDArrayDescriptor{
|
|
|
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
|
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
|
|
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{lda, (M * K) / lda, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{1, lda, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
|
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
|
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* float data_scale = */ 1.0,
|
|
|
|
|
/* float data_bias = */ 0.0,
|
|
|
|
|
},
|
|
|
|
|
/* BNNSNDArrayDescriptor iB_desc = */
|
|
|
|
|
BNNSNDArrayDescriptor{
|
|
|
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
|
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
|
|
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{ldb, (K * N) / ldb, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{1, ldb, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
|
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
|
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* float data_scale = */ 1.0,
|
|
|
|
|
/* float data_bias = */ 0.0,
|
|
|
|
|
},
|
|
|
|
|
/* BNNSNDArrayDescriptor o_desc = */
|
|
|
|
|
BNNSNDArrayDescriptor{
|
|
|
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
|
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
|
|
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{N, M, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
|
|
|
{1, N, 0, 0, 0, 0, 0, 0},
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
|
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
|
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
|
|
|
|
|
|
/* float data_scale = */ 1.0,
|
|
|
|
|
/* float data_bias = */ 0.0,
|
|
|
|
|
},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto bnns_filter =
|
|
|
|
|
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
|
|
|
|
BNNSFilterApplyTwoInput(
|
|
|
|
|
bnns_filter,
|
|
|
|
|
a.data<uint8_t>() +
|
|
|
|
|
elem_to_loc(M * K * i, a.shape(), a.strides()) * a.itemsize(),
|
|
|
|
|
b.data<uint8_t>() +
|
|
|
|
|
elem_to_loc(K * N * i, b.shape(), b.strides()) * b.itemsize(),
|
|
|
|
|
out.data<uint8_t>() + M * N * i * out.itemsize());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BNNSFilterDestroy(bnns_filter);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
void matmul<float16_t>(
|
|
|
|
|
const array& a,
|
|
|
|
|
const array& b,
|
|
|
|
|
array& out,
|
|
|
|
|
bool a_transposed,
|
|
|
|
|
bool b_transposed,
|
|
|
|
|
size_t lda,
|
|
|
|
|
size_t ldb,
|
|
|
|
|
float alpha,
|
|
|
|
|
float beta) {
|
|
|
|
|
matmul_bnns(a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
void matmul<bfloat16_t>(
|
|
|
|
|
const array& a,
|
|
|
|
|
const array& b,
|
|
|
|
|
array& out,
|
|
|
|
|
bool a_transposed,
|
|
|
|
|
bool b_transposed,
|
|
|
|
|
size_t lda,
|
|
|
|
|
size_t ldb,
|
|
|
|
|
float alpha,
|
|
|
|
|
float beta) {
|
|
|
|
|
matmul_bnns(a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace mlx::core
|