Files
mlx/docs/build/doctrees/python/nn/losses.doctree

61 lines
18 KiB
Plaintext
Raw Normal View History

2024-01-17 17:15:29 -08:00
<EFBFBD><05><>H<00>sphinx.addnodes<65><73>document<6E><74><EFBFBD>)<29><>}<7D>(<28> rawsource<63><65><00><>children<65>]<5D>(<28>docutils.nodes<65><73>target<65><74><EFBFBD>)<29><>}<7D>(h<05> .. _losses:<3A>h]<5D><>
attributes<EFBFBD>}<7D>(<28>ids<64>]<5D><>classes<65>]<5D><>names<65>]<5D><>dupnames<65>]<5D><>backrefs<66>]<5D><>refid<69><64>losses<65>u<EFBFBD>tagname<6D>h
<EFBFBD>line<6E>K<01>parent<6E>h<03> _document<6E>h<03>source<63><65>9/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst<73>ubh <09>section<6F><6E><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09>title<6C><65><EFBFBD>)<29><>}<7D>(h<05>Loss Functions<6E>h]<5D>h <09>Text<78><74><EFBFBD><EFBFBD>Loss Functions<6E><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h+h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhh)h h&h!hh"h#hKubh<00>tabular_col_spec<65><63><EFBFBD>)<29><>}<7D>(hhh]<5D>h}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>spec<65><63>\X{1}{2}\X{1}{2}<7D>uhh;h h&h!hh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hNub<75>sphinx.ext.autosummary<72><79>autosummary_table<6C><65><EFBFBD>)<29><>}<7D>(hX_
binary_cross_entropy(logits, targets[, ...])
Computes the binary cross entropy loss.
cosine_similarity_loss(x1, x2[, axis, eps, ...])
Computes the cosine similarity between the two inputs.
cross_entropy(logits, targets[, weights, ...])
Computes the cross entropy loss.
hinge_loss(inputs, targets[, reduction])
Computes the hinge loss between inputs and targets.
huber_loss(inputs, targets[, delta, reduction])
Computes the Huber loss between inputs and targets.
kl_div_loss(inputs, targets[, axis, reduction])
Computes the Kullback-Leibler divergence loss.
l1_loss(predictions, targets[, reduction])
Computes the L1 loss.
log_cosh_loss(inputs, targets[, reduction])
Computes the log cosh loss between inputs and targets.
mse_loss(predictions, targets[, reduction])
Computes the mean squared error loss.
nll_loss(inputs, targets[, axis, reduction])
Computes the negative log likelihood loss.
smooth_l1_loss(predictions, targets[, beta, ...])
Computes the smooth L1 loss.
triplet_loss(anchors, positives, negatives)
Computes the triplet loss for a set of anchor, positive, and negative samples.<2E>h]<5D>h <09>table<6C><65><EFBFBD>)<29><>}<7D>(hhh]<5D>h <09>tgroup<75><70><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09>colspec<65><63><EFBFBD>)<29><>}<7D>(hhh]<5D>h}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>colwidth<74>K
uhhZh hWubh[)<29><>}<7D>(hhh]<5D>h}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>colwidth<74>KZuhhZh hWubh <09>tbody<64><79><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09>row<6F><77><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09>entry<72><79><EFBFBD>)<29><>}<7D>(hhh]<5D>h <09> paragraph<70><68><EFBFBD>)<29><>}<7D>(h<05>c:py:obj:`binary_cross_entropy <mlx.nn.losses.binary_cross_entropy>`\ \(logits\, targets\[\, ...\]\)<29>h]<5D>(h<00> pending_xref<65><66><EFBFBD>)<29><>}<7D>(h<05>C:py:obj:`binary_cross_entropy <mlx.nn.losses.binary_cross_entropy>`<60>h]<5D>h <09>literal<61><6C><EFBFBD>)<29><>}<7D>(hh<>h]<5D>h0<68>binary_cross_entropy<70><79><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>(<28>xref<65><66>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h h<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F><63>python/nn/losses<65><73> refdomain<69>h<EFBFBD><68>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E><EFBFBD> py:module<6C><65> mlx.nn.losses<65><73>py:class<73>N<EFBFBD> reftarget<65><74>"mlx.nn.losses.binary_cross_entropy<70>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh h<>ubh0<68>(logits, targets[, ...])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"h<>hKh h|ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh hwubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>'Computes the binary cross entropy loss.<2E>h]<5D>h0<68>'Computes the binary cross entropy loss.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh h<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh hwubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>k:py:obj:`cosine_similarity_loss <mlx.nn.losses.cosine_similarity_loss>`\ \(x1\, x2\[\, axis\, eps\, ...\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>G:py:obj:`cosine_similarity_loss <mlx.nn.losses.cosine_similarity_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hh<>h]<5D>h0<68>cosine_similarity_loss<73><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h h<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>h<EFBFBD><68>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>$mlx.nn.losses.cosine_similarity_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh h<>ubh0<68>(x1, x2[, axis, eps, ...])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h h<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"jhKh h<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh h<>ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>6Computes the cosine similarity between the two inputs.<2E>h]<5D>h0<68>6Computes the cosine similarity between the two inputs.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h jh!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh jubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh h<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>_:py:obj:`cross_entropy <mlx.nn.losses.cross_entropy>`\ \(logits\, targets\[\, weights\, ...\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>5:py:obj:`cross_entropy <mlx.nn.losses.cross_entropy>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hjCh]<5D>h0<68> cross_entropy<70><79><EFBFBD><EFBFBD><EFBFBD>}<7D>(h jEh!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h jAubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>jO<00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.cross_entropy<70>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j=ubh0<68>!(logits, targets[, weights, ...])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j=h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"jahKh j:ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j7ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05> Computes the cross entropy loss.<2E>h]<5D>h0<68> Computes the cross entropy loss.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h juh!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh jrubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j7ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>U:py:obj:`hinge_loss <mlx.nn.losses.hinge_loss>`\ \(inputs\, targets\[\, reduction\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>/:py:obj:`hinge_loss <mlx.nn.losses.hinge_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hj<>h]<5D>h0<68>
hinge_loss<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>j<EFBFBD><00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.hinge_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubh0<68>(inputs, targets[, reduction])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"j<>hKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>3Computes the hinge loss between inputs and targets.<2E>h]<5D>h0<68>3Computes the hinge loss between inputs and targets.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>]:py:obj:`huber_loss <mlx.nn.losses.huber_loss>`\ \(inputs\, targets\[\, delta\, reduction\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>/:py:obj:`huber_loss <mlx.nn.losses.huber_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hj<>h]<5D>h0<68>
huber_loss<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>j<00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.huber_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubh0<68>%(inputs, targets[, delta, reduction])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"jhKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>3Computes the Huber loss between inputs and targets.<2E>h]<5D>h0<68>3Computes the Huber loss between inputs and targets.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j'h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j$ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>^:py:obj:`kl_div_loss <mlx.nn.losses.kl_div_loss>`\ \(inputs\, targets\[\, axis\, reduction\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>1:py:obj:`kl_div_loss <mlx.nn.losses.kl_div_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hjNh]<5D>h0<68> kl_div_loss<73><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(h jPh!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h jLubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>jZ<00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.kl_div_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh jHubh0<68>$(inputs, targets[, axis, reduction])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h jHh!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"jlhKh jEubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh jBubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>.Computes the Kullback-Leibler divergence loss.<2E>h]<5D>h0<68>.Computes the Kullback-Leibler divergence loss.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j}ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh jBubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>T:py:obj:`l1_loss <mlx.nn.losses.l1_loss>`\ \(predictions\, targets\[\, reduction\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>):py:obj:`l1_loss <mlx.nn.losses.l1_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hj<>h]<5D>h0<68>l1_loss<73><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>j<EFBFBD><00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.l1_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubh0<68>#(predictions, targets[, reduction])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"j<>hKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>Computes the L1 loss.<2E>h]<5D>h0<68>Computes the L1 loss.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>[:py:obj:`log_cosh_loss <mlx.nn.losses.log_cosh_loss>`\ \(inputs\, targets\[\, reduction\]\)<29>h]<5D>(h<>)<29><>}<7D>(h<05>5:py:obj:`log_cosh_loss <mlx.nn.losses.log_cosh_loss>`<60>h]<5D>h<EFBFBD>)<29><>}<7D>(hjh]<5D>h0<68> log_cosh_loss<73><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(h jh!hh"NhNubah}<7D>(h]<5D>h]<5D>(h<><68>py<70><79>py-obj<62>eh]<5D>h]<5D>h]<5D>uhh<>h j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>j <00>reftype<70><65>obj<62><6A> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD>h<EFBFBD>h<EFBFBD>Nh<4E><68>mlx.nn.losses.log_cosh_loss<73>uhh<>h"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j<>ubh0<68>(inputs, targets[, reduction])<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j<>h!hh"NhNubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"jhKh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubh{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>6Computes the log cosh loss between inputs and targets.<2E>h]<5D>h0<68>6Computes the log cosh loss between inputs and targets.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h j2h!hh"NhNubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh"<22>J/Users/awnihannun/repos/mlx/docs/src/python/nn/losses.rst:23:<autosummary><3E>hKh j/ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhzh j<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhuh hrubhv)<29><>}<7D>(hhh]<5D>(h{)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(h<05>V:py:obj:`mse_loss <mlx.nn.losses.mse_loss
rawentries<EFBFBD>]<5D>uhj<>h j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>j<EFBFBD>j<>uhj<>h h&h!hh"hHhNubeh}<7D>(h]<5D>(<28>loss-functions<6E>heh]<5D>h]<5D>(<28>loss functions<6E><73>losses<65>eh]<5D>h]<5D>uhh$h hh!hh"h#hK<06>expect_referenced_by_name<6D>}<7D>j h s<>expect_referenced_by_id<69>}<7D>hh subeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>source<63>h#uhh<01>current_source<63>N<EFBFBD> current_line<6E>N<EFBFBD>settings<67><73>docutils.frontend<6E><64>Values<65><73><EFBFBD>)<29><>}<7D>(h)N<> generator<6F>N<EFBFBD> datestamp<6D>N<EFBFBD> source_link<6E>N<EFBFBD>
source_url<EFBFBD>N<EFBFBD> toc_backlinks<6B>hz<68>footnote_backlinks<6B>K<01> sectnum_xform<72>K<01>strip_comments<74>N<EFBFBD>strip_elements_with_classes<65>N<EFBFBD> strip_classes<65>N<EFBFBD> report_level<65>K<02>
halt_level<EFBFBD>K<05>exit_status_level<65>K<05>debug<75>N<EFBFBD>warning_stream<61>N<EFBFBD> traceback<63><6B><EFBFBD>input_encoding<6E><67> utf-8-sig<69><67>input_encoding_error_handler<65><72>strict<63><74>output_encoding<6E><67>utf-8<><38>output_encoding_error_handler<65>j2<00>error_encoding<6E><67>utf-8<><38>error_encoding_error_handler<65><72>backslashreplace<63><65> language_code<64><65>en<65><6E>record_dependencies<65>N<EFBFBD>config<69>N<EFBFBD> id_prefix<69>h<06>auto_id_prefix<69><78>id<69><64> dump_settings<67>N<EFBFBD>dump_internals<6C>N<EFBFBD>dump_transforms<6D>N<EFBFBD>dump_pseudo_xml<6D>N<EFBFBD>expose_internals<6C>N<EFBFBD>strict_visitor<6F>N<EFBFBD>_disable_config<69>N<EFBFBD>_source<63>h#<23> _destination<6F>N<EFBFBD> _config_files<65>]<5D><>file_insertion_enabled<65><64><EFBFBD> raw_enabled<65>K<01>line_length_limit<69>M'<27>pep_references<65>N<EFBFBD> pep_base_url<72><6C>https://peps.python.org/<2F><>pep_file_url_template<74><65>pep-%04d<34><64>rfc_references<65>N<EFBFBD> rfc_base_url<72><6C>&https://datatracker.ietf.org/doc/html/<2F><> tab_width<74>K<08>trim_footnote_reference_space<63><65><EFBFBD>syntax_highlight<68><74>long<6E><67> smart_quotes<65><73><EFBFBD>smartquotes_locales<65>]<5D><>character_level_inline_markup<75><70><EFBFBD>doctitle_xform<72><6D><EFBFBD> docinfo_xform<72>K<01>sectsubtitle_xform<72><6D><EFBFBD> image_loading<6E><67>link<6E><6B>embed_stylesheet<65><74><EFBFBD>cloak_email_addresses<65><73><EFBFBD>section_self_link<6E><6B><EFBFBD>env<6E>Nub<75>reporter<65>N<EFBFBD>indirect_targets<74>]<5D><>substitution_defs<66>}<7D><>substitution_names<65>}<7D><>refnames<65>}<7D><>refids<64>}<7D>h]<5D>h as<61>nameids<64>}<7D>(j hjju<> nametypes<65>}<7D>(j <00>j<00>uh}<7D>(hh&jh&u<> footnote_refs<66>}<7D><> citation_refs<66>}<7D><> autofootnotes<65>]<5D><>autofootnote_refs<66>]<5D><>symbol_footnotes<65>]<5D><>symbol_footnote_refs<66>]<5D><> footnotes<65>]<5D><> citations<6E>]<5D><>autofootnote_start<72>K<01>symbol_footnote_start<72>K<00>
id_counter<EFBFBD><EFBFBD> collections<6E><73>Counter<65><72><EFBFBD>}<7D><><EFBFBD>R<EFBFBD><52>parse_messages<65>]<5D><>transform_messages<65>]<5D>h <09>system_message<67><65><EFBFBD>)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(hhh]<5D>h0<68>,Hyperlink target "losses" is not referenced.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>h j<>sbah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D>uhhh j<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h]<5D><>level<65>K<01>type<70><65>INFO<46><4F>source<63>h#<23>line<6E>Kuhj<>uba<62> transformer<65>N<EFBFBD> include_log<6F>]<5D><>
decoration<EFBFBD>Nh!hub.