mlx/python/tests/test_array.py

1057 lines
35 KiB
Python
Raw Normal View History

2023-12-01 03:12:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 02:30:41 +08:00
import operator
import unittest
from itertools import permutations
import mlx.core as mx
import mlx_tests
2023-12-09 03:31:47 +08:00
import numpy as np
2023-11-30 02:30:41 +08:00
class TestVersion(mlx_tests.MLXTestCase):
def test_version(self):
v = mx.__version__
vnums = v.split(".")
self.assertGreaterEqual(len(vnums), 3)
v = ".".join(str(int(vn)) for vn in vnums[:3])
self.assertEqual(v, mx.__version__[: len(v)])
2023-11-30 02:30:41 +08:00
class TestDtypes(mlx_tests.MLXTestCase):
def test_dtypes(self):
self.assertEqual(mx.bool_.size, 1)
self.assertEqual(mx.uint8.size, 1)
self.assertEqual(mx.uint16.size, 2)
self.assertEqual(mx.uint32.size, 4)
self.assertEqual(mx.uint64.size, 8)
self.assertEqual(mx.int8.size, 1)
self.assertEqual(mx.int16.size, 2)
self.assertEqual(mx.int32.size, 4)
self.assertEqual(mx.int64.size, 8)
self.assertEqual(mx.float16.size, 2)
self.assertEqual(mx.float32.size, 4)
self.assertEqual(mx.bfloat16.size, 2)
self.assertEqual(mx.complex64.size, 8)
self.assertEqual(str(mx.bool_), "mlx.core.bool")
self.assertEqual(str(mx.uint8), "mlx.core.uint8")
self.assertEqual(str(mx.uint16), "mlx.core.uint16")
self.assertEqual(str(mx.uint32), "mlx.core.uint32")
self.assertEqual(str(mx.uint64), "mlx.core.uint64")
self.assertEqual(str(mx.int8), "mlx.core.int8")
self.assertEqual(str(mx.int16), "mlx.core.int16")
self.assertEqual(str(mx.int32), "mlx.core.int32")
self.assertEqual(str(mx.int64), "mlx.core.int64")
self.assertEqual(str(mx.float16), "mlx.core.float16")
self.assertEqual(str(mx.float32), "mlx.core.float32")
self.assertEqual(str(mx.bfloat16), "mlx.core.bfloat16")
self.assertEqual(str(mx.complex64), "mlx.core.complex64")
2023-11-30 02:30:41 +08:00
def test_scalar_conversion(self):
dtypes = [
"uint8",
"uint16",
"uint32",
"uint64",
"int8",
"int16",
"int32",
"int64",
"float16",
"float32",
"complex64",
]
for dtype in dtypes:
with self.subTest(dtype=dtype):
x = np.array(2, dtype=getattr(np, dtype))
y = np.min(x)
self.assertEqual(x.dtype, y.dtype)
self.assertTupleEqual(x.shape, y.shape)
z = mx.array(y)
self.assertEqual(np.array(z), x)
self.assertEqual(np.array(z), y)
self.assertEqual(z.dtype, getattr(mx, dtype))
self.assertListEqual(list(z.shape), list(x.shape))
self.assertListEqual(list(z.shape), list(y.shape))
class TestArray(mlx_tests.MLXTestCase):
def test_array_basics(self):
x = mx.array(1)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.itemsize, 4)
self.assertEqual(x.nbytes, 4)
2023-11-30 02:30:41 +08:00
self.assertEqual(x.shape, [])
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
with self.assertRaises(TypeError):
len(x)
x = mx.array(1, mx.uint32)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
x = mx.array(1, mx.int64)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
x = mx.array(1, mx.bfloat16)
self.assertEqual(x.item(), 1.0)
2023-11-30 02:30:41 +08:00
x = mx.array(1.0)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, [])
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.item(), 1.0)
self.assertTrue(isinstance(x.item(), float))
x = mx.array(False)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, [])
self.assertEqual(x.dtype, mx.bool_)
self.assertEqual(x.item(), False)
self.assertTrue(isinstance(x.item(), bool))
x = mx.array(complex(1, 1))
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, [])
self.assertEqual(x.dtype, mx.complex64)
self.assertEqual(x.item(), complex(1, 1))
self.assertTrue(isinstance(x.item(), complex))
x = mx.array([True, False, True])
self.assertEqual(x.dtype, mx.bool_)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, [3])
self.assertEqual(len(x), 3)
x = mx.array([True, False, True], mx.float32)
self.assertEqual(x.dtype, mx.float32)
x = mx.array([0, 1, 2])
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, [3])
x = mx.array([0, 1, 2], mx.float32)
self.assertEqual(x.dtype, mx.float32)
x = mx.array([0.0, 1.0, 2.0])
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, [3])
x = mx.array([1j, 1 + 0j])
self.assertEqual(x.dtype, mx.complex64)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, [2])
# From tuple
x = mx.array((1, 2, 3), mx.int32)
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.tolist(), [1, 2, 3])
def test_bool_conversion(self):
x = mx.array(True)
self.assertTrue(x)
x = mx.array(False)
self.assertFalse(x)
x = mx.array(1.0)
self.assertTrue(x)
x = mx.array(0.0)
self.assertFalse(x)
def test_construction_from_lists(self):
x = mx.array([])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [0])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[], [], []])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [3, 0])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[[], []], [[], []], [[], []]])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [3, 2, 0])
self.assertEqual(x.dtype, mx.float32)
# Check failure cases
with self.assertRaises(ValueError):
x = mx.array([[[], []], [[]], [[], []]])
with self.assertRaises(ValueError):
x = mx.array([[[], []], [[1.0, 2.0], []], [[], []]])
with self.assertRaises(ValueError):
x = mx.array([[0, 1], [[0, 1], 1]])
with self.assertRaises(ValueError):
x = mx.array([[0, 1], ["hello", 1]])
x = mx.array([True, False, 3])
self.assertEqual(x.dtype, mx.int32)
x = mx.array([True, False, 3, 4.0])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[True, False], [1, 3], [2, 4.0]])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.bool_)
self.assertEqual(x.dtype, mx.bool_)
self.assertTrue(mx.array_equal(x, mx.array([[True, True], [False, True]])))
x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.int32)
self.assertTrue(mx.array_equal(x, mx.array([[1, 2], [0, 3]])))
x = mx.array([1 + 0j, 2j, True, 0], mx.complex64)
self.assertEqual(x.tolist(), [1 + 0j, 2j, 1 + 0j, 0j])
def test_init_from_array(self):
x = mx.array(3.0)
y = mx.array(x)
self.assertTrue(mx.array_equal(x, y))
y = mx.array(x, mx.int32)
self.assertEqual(y.dtype, mx.int32)
self.assertEqual(y.item(), 3)
y = mx.array(x, mx.bool_)
self.assertEqual(y.dtype, mx.bool_)
self.assertEqual(y.item(), True)
# y = mx.array(x, mx.complex64)
# self.assertEqual(y.dtype, mx.complex64)
# self.assertEqual(y.item(), 3.0+0j)
def test_array_repr(self):
x = mx.array(True)
self.assertEqual(str(x), "array(true, dtype=bool)")
x = mx.array(1)
self.assertEqual(str(x), "array(1, dtype=int32)")
x = mx.array(1.0)
self.assertEqual(str(x), "array(1, dtype=float32)")
x = mx.array([1, 0, 1])
self.assertEqual(str(x), "array([1, 0, 1], dtype=int32)")
x = mx.array([1] * 6)
expected = "array([1, 1, 1, 1, 1, 1], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([1] * 7)
expected = "array([1, 1, 1, ..., 1, 1, 1], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([[1, 2], [1, 2], [1, 2]])
expected = "array([[1, 2],\n" " [1, 2],\n" " [1, 2]], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]])
expected = (
"array([[[1, 2],\n"
" [1, 2]],\n"
" [[1, 2],\n"
" [1, 2]]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([[1, 2]] * 6)
expected = (
"array([[1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([[1, 2]] * 7)
expected = (
"array([[1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" ...,\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.int8)
expected = "array([1], dtype=int8)"
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.int16)
expected = "array([1], dtype=int16)"
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.uint8)
expected = "array([1], dtype=uint8)"
self.assertEqual(str(x), expected)
# Fp16 is not supported in all platforms
x = mx.array([1.2], dtype=mx.float16)
expected = "array([1.2002], dtype=float16)"
self.assertEqual(str(x), expected)
x = mx.array([1 + 1j], dtype=mx.complex64)
expected = "array([1+1j], dtype=complex64)"
self.assertEqual(str(x), expected)
x = mx.array([1 - 1j], dtype=mx.complex64)
expected = "array([1-1j], dtype=complex64)"
x = mx.array([1 + 1j], dtype=mx.complex64)
expected = "array([1+1j], dtype=complex64)"
self.assertEqual(str(x), expected)
x = mx.array([1 - 1j], dtype=mx.complex64)
expected = "array([1-1j], dtype=complex64)"
def test_array_to_list(self):
types = [mx.bool_, mx.uint32, mx.int32, mx.int64, mx.float32]
for t in types:
x = mx.array(1, t)
self.assertEqual(x.tolist(), 1)
vals = [1, 2, 3, 4]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[1, 2], [3, 4]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[1, 0], [0, 1]]
x = mx.array(vals, mx.bool_)
self.assertEqual(x.tolist(), vals)
vals = [[1.5, 2.5], [3.5, 4.5]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[[0.5, 1.5], [2.5, 3.5]], [[4.5, 5.5], [6.5, 7.5]]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
# Empty arrays
vals = []
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[], []]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
# Complex arrays
vals = [0.5 + 0j, 1.5 + 1j, 2.5 + 0j, 3.5 + 1j]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
def test_array_np_conversion(self):
# Shape test
a = np.array([])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [0])
self.assertEqual(x.dtype, mx.float32)
a = np.array([[], [], []])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [3, 0])
self.assertEqual(x.dtype, mx.float32)
a = np.array([[[], []], [[], []], [[], []]])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, [3, 2, 0])
self.assertEqual(x.dtype, mx.float32)
# Content test
a = 2.0 * np.ones((3, 5, 4))
x = mx.array(a)
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.ndim, 3)
self.assertEqual(x.shape, [3, 5, 4])
y = np.asarray(x)
self.assertTrue(np.allclose(a, y))
a = np.array(3, dtype=np.int32)
x = mx.array(a)
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, [])
self.assertEqual(x.item(), 3)
# mlx to numpy test
x = mx.array([True, False, True])
y = np.asarray(x)
self.assertEqual(y.dtype, np.bool_)
self.assertEqual(y.ndim, 1)
self.assertEqual(y.shape, (3,))
self.assertEqual(y[0], True)
self.assertEqual(y[1], False)
self.assertEqual(y[2], True)
# complex64 mx <-> np
cvals = [0j, 1, 1 + 1j]
x = np.array(cvals)
y = mx.array(x)
self.assertEqual(y.dtype, mx.complex64)
self.assertEqual(y.shape, [3])
self.assertEqual(y.tolist(), cvals)
y = mx.array([0j, 1, 1 + 1j])
x = np.asarray(y)
self.assertEqual(x.dtype, np.complex64)
self.assertEqual(x.shape, (3,))
self.assertEqual(x.tolist(), cvals)
def test_array_np_dtype_conversion(self):
dtypes_list = [
(mx.bool_, np.bool_),
(mx.uint8, np.uint8),
(mx.uint16, np.uint16),
(mx.uint32, np.uint32),
(mx.uint64, np.uint64),
(mx.int8, np.int8),
(mx.int16, np.int16),
(mx.int32, np.int32),
(mx.int64, np.int64),
(mx.float16, np.float16),
(mx.float32, np.float32),
(mx.complex64, np.complex64),
]
for mlx_dtype, np_dtype in dtypes_list:
a_npy = np.random.uniform(low=0, high=100, size=(32,)).astype(np_dtype)
a_mlx = mx.array(a_npy)
self.assertEqual(a_mlx.dtype, mlx_dtype)
self.assertTrue(np.allclose(a_mlx, a_npy))
b_mlx = mx.random.uniform(
low=0,
high=10,
shape=(32,),
).astype(mlx_dtype)
b_npy = np.array(b_mlx)
self.assertEqual(b_npy.dtype, np_dtype)
def test_dtype_promotion(self):
dtypes_list = [
(mx.bool_, np.bool_),
(mx.uint8, np.uint8),
(mx.uint16, np.uint16),
(mx.uint32, np.uint32),
(mx.uint64, np.uint64),
(mx.int8, np.int8),
(mx.int16, np.int16),
(mx.int32, np.int32),
(mx.int64, np.int64),
(mx.float32, np.float32),
]
promotion_pairs = permutations(dtypes_list, 2)
for (mlx_dt_1, np_dt_1), (mlx_dt_2, np_dt_2) in promotion_pairs:
with self.subTest(dtype1=np_dt_1, dtype2=np_dt_2):
a_npy = np.ones((3,), dtype=np_dt_1)
b_npy = np.ones((3,), dtype=np_dt_2)
c_npy = a_npy + b_npy
a_mlx = mx.ones((3,), dtype=mlx_dt_1)
b_mlx = mx.ones((3,), dtype=mlx_dt_2)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.array(c_npy).dtype)
a_mlx = mx.ones((3,), dtype=mx.float16)
b_mlx = mx.ones((3,), dtype=mx.float32)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.float32)
b_mlx = mx.ones((3,), dtype=mx.int32)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.float16)
def test_dtype_python_scalar_promotion(self):
tests = [
(mx.bool_, operator.mul, False, mx.bool_),
(mx.bool_, operator.mul, 0, mx.int32),
(mx.bool_, operator.mul, 1.0, mx.float32),
(mx.int8, operator.mul, False, mx.int8),
(mx.int8, operator.mul, 0, mx.int8),
(mx.int8, operator.mul, 1.0, mx.float32),
(mx.int16, operator.mul, False, mx.int16),
(mx.int16, operator.mul, 0, mx.int16),
(mx.int16, operator.mul, 1.0, mx.float32),
(mx.int32, operator.mul, False, mx.int32),
(mx.int32, operator.mul, 0, mx.int32),
(mx.int32, operator.mul, 1.0, mx.float32),
(mx.int64, operator.mul, False, mx.int64),
(mx.int64, operator.mul, 0, mx.int64),
(mx.int64, operator.mul, 1.0, mx.float32),
(mx.uint8, operator.mul, False, mx.uint8),
(mx.uint8, operator.mul, 0, mx.uint8),
(mx.uint8, operator.mul, 1.0, mx.float32),
(mx.uint16, operator.mul, False, mx.uint16),
(mx.uint16, operator.mul, 0, mx.uint16),
(mx.uint16, operator.mul, 1.0, mx.float32),
(mx.uint32, operator.mul, False, mx.uint32),
(mx.uint32, operator.mul, 0, mx.uint32),
(mx.uint32, operator.mul, 1.0, mx.float32),
(mx.uint64, operator.mul, False, mx.uint64),
(mx.uint64, operator.mul, 0, mx.uint64),
(mx.uint64, operator.mul, 1.0, mx.float32),
(mx.float32, operator.mul, False, mx.float32),
(mx.float32, operator.mul, 0, mx.float32),
(mx.float32, operator.mul, 1.0, mx.float32),
(mx.float16, operator.mul, False, mx.float16),
(mx.float16, operator.mul, 0, mx.float16),
(mx.float16, operator.mul, 1.0, mx.float16),
]
for dtype_in, f, v, dtype_out in tests:
x = mx.array(0, dtype_in)
y = f(x, v)
self.assertEqual(y.dtype, dtype_out)
def test_array_comparison(self):
a = mx.array([0.0, 1.0, 5.0])
b = mx.array([-1.0, 2.0, 5.0])
self.assertEqual((a < b).tolist(), [False, True, False])
self.assertEqual((a <= b).tolist(), [False, True, True])
self.assertEqual((a > b).tolist(), [True, False, False])
self.assertEqual((a >= b).tolist(), [True, False, True])
self.assertEqual((a < 5).tolist(), [True, True, False])
self.assertEqual((5 < a).tolist(), [False, False, False])
self.assertEqual((5 <= a).tolist(), [False, False, True])
self.assertEqual((a > 1).tolist(), [False, False, True])
self.assertEqual((a >= 1).tolist(), [False, True, True])
def test_array_neg(self):
a = mx.array([-1.0, 4.0, 0.0])
self.assertEqual((-a).tolist(), [1.0, -4.0, 0.0])
def test_array_type_cast(self):
a = mx.array([0.1, 2.3, -1.3])
b = [0, 2, -1]
self.assertEqual(a.astype(mx.int32).tolist(), b)
self.assertEqual(a.astype(mx.int32).dtype, mx.int32)
b = mx.array(b).astype(mx.float32)
self.assertEqual(b.dtype, mx.float32)
def test_array_iteration(self):
a = mx.array([0, 1, 2])
for i, x in enumerate(a):
self.assertEqual(x.item(), i)
a = mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
x, y, z = a
self.assertEqual(x.tolist(), [1.0, 2.0])
self.assertEqual(y.tolist(), [3.0, 4.0])
self.assertEqual(z.tolist(), [5.0, 6.0])
def test_indexing(self):
# Basic content check, slice indexing
a_npy = np.arange(64, dtype=np.float32)
a_mlx = mx.array(a_npy)
a_sliced_mlx = a_mlx[2:50:4]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:50:4]))
# Basic content check, mlx array indexing
a_npy = np.arange(64, dtype=np.int32)
a_npy = a_npy.reshape((8, 8))
a_mlx = mx.array(a_npy)
idx_npy = np.array([0, 1, 2, 7, 5], dtype=np.uint32)
idx_mlx = mx.array(idx_npy)
a_sliced_mlx = a_mlx[idx_mlx]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy]))
# Basic content check, int indexing
a_sliced_mlx = a_mlx[5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[5]))
self.assertEqual(len(a_sliced_npy.shape), len(a_npy[5].shape))
self.assertEqual(len(a_sliced_npy.shape), 1)
self.assertEqual(a_sliced_npy.shape[0], a_npy[5].shape[0])
# Basic content check, negative indexing
a_sliced_mlx = a_mlx[-1]
self.assertTrue(np.array_equal(a_sliced_mlx, a_npy[-1]))
# Basic content check, empty index
a_sliced_mlx = a_mlx[()]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[()]))
# Basic content check, new axis
a_sliced_mlx = a_mlx[None]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[None]))
# Multi dim indexing, all ints
self.assertEqual(a_mlx[0, 0].item(), 0)
self.assertEqual(a_mlx[0, 0].ndim, 0)
# Multi dim indexing, all slices
a_sliced_mlx = a_mlx[2:4, 5:]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:4, 5:]))
a_sliced_mlx = a_mlx[:, 0:5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, 0:5]))
# Slicing, strides
a_sliced_mlx = a_mlx[:, ::2]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, ::2]))
# Slicing, -ve index
a_sliced_mlx = a_mlx[-2:, :-1]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[-2:, :-1]))
# Slicing, start > end
a_sliced_mlx = a_mlx[8:3]
self.assertEqual(a_sliced_mlx.size, 0)
# Slicing, Clipping past the end
a_sliced_mlx = a_mlx[7:10]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[7:10]))
# Multi dim indexing, int and slices
a_sliced_mlx = a_mlx[0, :5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[0, :5]))
a_sliced_mlx = a_mlx[:, -1]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, -1]))
# Multi dim indexing, int and array
a_sliced_mlx = a_mlx[idx_mlx, 0]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, 0]))
# Multi dim indexing, array and slices
a_sliced_mlx = a_mlx[idx_mlx, :5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, :5]))
a_sliced_mlx = a_mlx[:, idx_mlx]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, idx_npy]))
# Multi dim indexing with multiple arrays
def check_slices(arr_np, *idx_np):
arr_mlx = mx.array(arr_np)
idx_mlx = [
mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
]
slice_mlx = arr_mlx[tuple(idx_mlx)]
self.assertTrue(
np.array_equal(arr_np[tuple(idx_np)], arr_mlx[tuple(idx_mlx)])
)
a_np = np.arange(16).reshape(4, 4)
check_slices(a_np, np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3]))
check_slices(a_np, np.array([0, 1, 2, 3]), np.array([1, 0, 3, 3]))
check_slices(a_np, np.array([[0, 1]]), np.array([[0], [1], [3]]))
a_np = np.arange(64).reshape(2, 4, 2, 4)
check_slices(a_np, 0, np.array([0, 1, 2]))
check_slices(a_np, slice(0, 1), np.array([0, 1, 2]))
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), slice(0, 4, 2)
)
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), np.array([1, 2, 0])
)
check_slices(a_np, slice(0, 1), np.array([0, 1, 2]), 1, np.array([1, 2, 0]))
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), np.array([1, 0, 0]), slice(0, 1)
)
check_slices(
a_np,
slice(0, 1),
np.array([[0], [1], [2]]),
np.array([[1, 0, 0]]),
slice(0, 1),
)
check_slices(
a_np,
slice(0, 2),
np.array([[0], [1], [2]]),
slice(0, 2),
np.array([[1, 0, 0]]),
)
for p in permutations([slice(None), slice(None), 0, np.array([1, 0])]):
check_slices(a_np, *p)
for p in permutations(
[slice(None), slice(None), 0, np.array([1, 0]), None, None]
):
check_slices(a_np, *p)
for p in permutations([0, np.array([1, 0]), None, Ellipsis, slice(None)]):
check_slices(a_np, *p)
# Non-contiguous arrays in slicing
a_mlx = mx.reshape(mx.arange(128), (16, 8))
a_mlx = a_mlx[::2, :]
a_np = np.array(a_mlx)
idx_np = np.arange(8)[::2]
idx_mlx = mx.arange(8)[::2]
self.assertTrue(
np.array_equal(a_np[idx_np, idx_np], np.array(a_mlx[idx_mlx, idx_mlx]))
)
2023-12-21 02:44:01 +08:00
# Slicing with negative indices and integer
a_np = np.arange(10).reshape(5, 2)
a_mlx = mx.array(a_np)
self.assertTrue(np.array_equal(a_np[2:-1, 0], np.array(a_mlx[2:-1, 0])))
2023-11-30 02:30:41 +08:00
def test_setitem(self):
a = mx.array(0)
a[None] = 1
self.assertEqual(a.item(), 1)
a = mx.array([1, 2, 3])
a[0] = 2
self.assertEqual(a.tolist(), [2, 2, 3])
a[-1] = 2
self.assertEqual(a.tolist(), [2, 2, 2])
a[0] = mx.array([[[1]]])
self.assertEqual(a.tolist(), [1, 2, 2])
a[:] = 0
self.assertEqual(a.tolist(), [0, 0, 0])
a[None] = 1
self.assertEqual(a.tolist(), [1, 1, 1])
a[0:1] = 2
self.assertEqual(a.tolist(), [2, 1, 1])
a[0:2] = 3
self.assertEqual(a.tolist(), [3, 3, 1])
a[0:3] = 4
self.assertEqual(a.tolist(), [4, 4, 4])
a[0:1] = mx.array(0)
self.assertEqual(a.tolist(), [0, 4, 4])
a[0:1] = mx.array([1])
self.assertEqual(a.tolist(), [1, 4, 4])
with self.assertRaises(ValueError):
a[0:1] = mx.array([2, 3])
a[0:2] = mx.array([2, 2])
self.assertEqual(a.tolist(), [2, 2, 4])
a[:] = mx.array([[[[1, 1, 1]]]])
self.assertEqual(a.tolist(), [1, 1, 1])
# Array slices
def check_slices(arr_np, update_np, *idx_np):
arr_mlx = mx.array(arr_np)
update_mlx = mx.array(update_np)
idx_mlx = [
mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
]
if len(idx_np) > 1:
idx_np = tuple(idx_np)
idx_mlx = tuple(idx_mlx)
else:
idx_np = idx_np[0]
idx_mlx = idx_mlx[0]
arr_np[idx_np] = update_np
arr_mlx[idx_mlx] = update_mlx
self.assertTrue(np.array_equal(arr_np, arr_mlx))
check_slices(np.zeros((3, 3)), 1, 0)
check_slices(np.zeros((3, 3)), 1, -1)
check_slices(np.zeros((3, 3)), 1, slice(0, 2))
check_slices(np.zeros((3, 3)), np.array([[0, 1, 2], [3, 4, 5]]), slice(0, 2))
with self.assertRaises(ValueError):
a = mx.array(0)
a[0] = mx.array(1)
check_slices(np.zeros((3, 3)), 1, np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array(3), np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1]))
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
check_slices(
np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 0, 1])
)
# Multiple slices
a = mx.array(0)
a[None, None] = 1
self.assertEqual(a.item(), 1)
a[None, None] = mx.array(2)
self.assertEqual(a.item(), 2)
a[None, None] = mx.array([[[3]]])
self.assertEqual(a.item(), 3)
a[()] = 4
self.assertEqual(a.item(), 4)
a_np = np.zeros((2, 3, 4, 5))
check_slices(a_np, 1, np.array([0, 0]), slice(0, 2), slice(0, 3), 4)
check_slices(
a_np,
np.arange(10).reshape(2, 5),
np.array([0, 0]),
np.array([0, 1]),
np.array([2, 3]),
)
check_slices(
a_np,
np.array([[3], [4]]),
np.array([0, 0]),
np.array([0, 1]),
np.array([2, 3]),
)
check_slices(
a_np, np.arange(5), np.array([0, 0]), np.array([0, 1]), np.array([2, 3])
)
check_slices(np.zeros(5), np.arange(2), None, None, np.array([2, 3]))
check_slices(
np.zeros((4, 3, 4)),
np.arange(3),
np.array([2, 3]),
slice(0, 3),
np.array([2, 3]),
)
with self.assertRaises(ValueError):
a = mx.zeros((4, 3, 4))
a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(2)
with self.assertRaises(ValueError):
a = mx.zeros((4, 3, 4))
a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(3)
check_slices(np.zeros((4, 3, 4)), 1, np.array([2, 3]), None, np.array([2, 1]))
check_slices(
np.zeros((4, 3, 4)), np.arange(4), np.array([2, 3]), None, np.array([2, 1])
)
check_slices(
np.zeros((4, 3, 4)),
np.arange(2 * 4).reshape(2, 1, 4),
np.array([2, 3]),
None,
np.array([2, 1]),
)
check_slices(np.zeros((4, 4)), 1, slice(0, 2), slice(0, 2))
check_slices(np.zeros((4, 4)), np.arange(2), slice(0, 2), slice(0, 2))
check_slices(
np.zeros((4, 4)), np.arange(2).reshape(2, 1), slice(0, 2), slice(0, 2)
)
check_slices(
np.zeros((4, 4)), np.arange(4).reshape(2, 2), slice(0, 2), slice(0, 2)
)
with self.assertRaises(ValueError):
a = mx.zeros((2, 2, 2))
a[..., ...] = 1
with self.assertRaises(ValueError):
a = mx.zeros((2, 2, 2, 2, 2))
a[0, ..., 0, ..., 0] = 1
with self.assertRaises(ValueError):
a = mx.zeros((2, 2))
a[0, 0, 0] = 1
check_slices(np.zeros((2, 2, 2, 2)), 1, None, Ellipsis, None)
check_slices(
np.zeros((2, 2, 2, 2)), 1, np.array([0, 1]), Ellipsis, np.array([0, 1])
)
check_slices(
np.zeros((2, 2, 2, 2)),
np.arange(2 * 2 * 2).reshape(2, 2, 2),
np.array([0, 1]),
Ellipsis,
np.array([0, 1]),
)
2023-12-16 22:44:47 +08:00
# Check slice assign with negative indices works
a = mx.zeros((5, 5), mx.int32)
a[2:-2, 2:-2] = 4
2023-12-18 03:58:45 +08:00
self.assertEqual(a[2, 2].item(), 4)
2023-12-16 22:44:47 +08:00
2023-11-30 02:30:41 +08:00
def test_slice_negative_step(self):
a_np = np.arange(20)
a_mx = mx.array(a_np)
# Basic negative slice
b_np = a_np[::-1]
b_mx = a_mx[::-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds negative slice
b_np = a_np[-3:3:-1]
b_mx = a_mx[-3:3:-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds negative slice
b_np = a_np[25:-50:-1]
b_mx = a_mx[25:-50:-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Jumping negative slice
b_np = a_np[::-3]
b_mx = a_mx[::-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds and negative slice
b_np = a_np[-3:3:-3]
b_mx = a_mx[-3:3:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds and negative slice
b_np = a_np[25:-50:-3]
b_mx = a_mx[25:-50:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Negatie slice and ascending bounds
b_np = a_np[0:20:-3]
b_mx = a_mx[0:20:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Multi-dim negative slices
a_np = np.arange(3 * 6 * 4).reshape(3, 6, 4)
a_mx = mx.array(a_np)
# Flip each dim
b_np = a_np[..., ::-1]
b_mx = a_mx[..., ::-1]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[:, ::-1, :]
b_mx = a_mx[:, ::-1, :]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[::-1, ...]
b_mx = a_mx[::-1, ...]
self.assertTrue(np.array_equal(b_np, b_mx))
# Flip pairs of dims
b_np = a_np[::-1, 1:5:2, ::-2]
b_mx = a_mx[::-1, 1:5:2, ::-2]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[::-1, ::-2, 1:5:2]
b_mx = a_mx[::-1, ::-2, 1:5:2]
self.assertTrue(np.array_equal(b_np, b_mx))
# Flip all dims
b_np = a_np[::-1, ::-3, ::-2]
b_mx = a_mx[::-1, ::-3, ::-2]
self.assertTrue(np.array_equal(b_np, b_mx))
def test_api(self):
x = mx.array(np.random.rand(10, 10, 10))
ops = [
("reshape", (100, -1)),
"square",
"sqrt",
"rsqrt",
"reciprocal",
"exp",
"log",
"sin",
"cos",
"log1p",
("all", 1),
("any", 1),
("transpose", (0, 2, 1)),
("sum", 1),
("prod", 1),
("min", 1),
("max", 1),
("logsumexp", 1),
("mean", 1),
("var", 1),
("argmin", 1),
("argmax", 1),
]
for op in ops:
if isinstance(op, tuple):
op, *args = op
else:
args = tuple()
y1 = getattr(mx, op)(x, *args)
y2 = getattr(x, op)(*args)
self.assertEqual(y1.dtype, y2.dtype)
self.assertEqual(y1.shape, y2.shape)
self.assertTrue(mx.array_equal(y1, y2))
y1 = mx.split(x, 2)
y2 = x.split(2)
self.assertEqual(len(y1), 2)
self.assertEqual(len(y1), len(y2))
self.assertTrue(mx.array_equal(y1[0], y2[0]))
self.assertTrue(mx.array_equal(y1[1], y2[1]))
def test_memoryless_copy(self):
a_mx = mx.ones((2, 2))
b_mx = mx.broadcast_to(a_mx, (5, 2, 2))
# Make np arrays without copy
a_np = np.array(a_mx, copy=False)
b_np = np.array(b_mx, copy=False)
# Check that we get read-only array that does not own the underlying data
self.assertFalse(a_np.flags.owndata)
self.assertFalse(a_np.flags.writeable)
# Check contents
self.assertTrue(np.array_equal(np.ones((2, 2), dtype=np.float32), a_np))
self.assertTrue(np.array_equal(np.ones((5, 2, 2), dtype=np.float32), b_np))
# Check strides
self.assertSequenceEqual(b_np.strides, (0, 8, 4))
if __name__ == "__main__":
unittest.main()