mlx/python/tests/test_losses.py

280 lines
9.9 KiB
Python
Raw Normal View History

# Copyright © 2023 Apple Inc.
import unittest
import mlx.core as mx
import mlx.nn as nn
import mlx_tests
import numpy as np
class TestLosses(mlx_tests.MLXTestCase):
def test_cross_entropy(self):
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
targets = mx.array([0, 1])
# Test with reduction 'none'
losses_none = nn.losses.cross_entropy(logits, targets, reduction="none")
expected_none = mx.array([0.0, 0.0])
self.assertTrue(mx.array_equal(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
# Test with reduction 'sum'
losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
# Test cases with weights and no label smoothing
logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
targets = mx.array([0, 1])
weights = mx.array([1.0, 2.0])
# Reduction 'none'
losses_none = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="none",
)
expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses
self.assertTrue(
np.allclose(losses_none, expected_none, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]",
)
# Reduction 'mean'
losses_mean = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="mean",
)
expected_mean = mx.mean(expected_none)
self.assertTrue(
np.allclose(losses_mean, expected_mean, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]",
)
# Reduction 'sum'
losses_sum = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="sum",
)
expected_sum = mx.sum(expected_none)
self.assertTrue(
np.allclose(losses_sum, expected_sum, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]",
)
# Test case with equal weights and label smoothing > 0
logits = mx.array(
[[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]]
)
target = mx.array([2, 1, 0])
losses_none = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="none"
)
expected_none = mx.array([1.29693, 1.38617, 1.48176])
self.assertTrue(
mx.allclose(expected_none, losses_none),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'",
)
expected_mean = mx.mean(expected_none)
losses_mean = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="mean"
)
self.assertTrue(
mx.allclose(losses_mean, expected_mean),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'",
)
expected_sum = mx.sum(expected_none)
losses_sum = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="sum"
)
self.assertTrue(
mx.allclose(losses_sum, expected_sum),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'",
)
def test_l1_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.5, 0.2, 0.9, 0.0])
# Expected result
expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32)
expected_sum = mx.sum(expected_none)
expected_mean = mx.mean(expected_none)
losses = nn.losses.l1_loss(predictions, targets, reduction="none")
self.assertTrue(
mx.array_equal(losses, expected_none),
"Test failed for l1_loss --reduction='none'",
)
losses = nn.losses.l1_loss(predictions, targets, reduction="sum")
self.assertTrue(mx.array_equal(losses, expected_sum))
losses = nn.losses.l1_loss(predictions, targets, reduction="mean")
self.assertTrue(mx.array_equal(losses, expected_mean))
def test_mse_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.7, 0.1, 0.8, 0.2])
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
expected_mean = mx.mean(expected_none)
expected_sum = mx.sum(expected_none)
# Test with reduction 'none'
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
self.assertTrue(
np.allclose(losses_none, expected_none, 1e-5),
"Test case failed for mse_loss --reduction='none'",
)
# Test with reduction 'mean'
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
self.assertEqual(
losses_mean,
expected_mean,
"Test case failed for mse_loss --reduction='mean'",
)
# Test with reduction 'sum'
losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
self.assertEqual(
losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'"
)
def test_smooth_l1_loss(self):
predictions = mx.array([1.5, 2.5, 0.5, 3.5])
targets = mx.array([1.0, 2.0, 0.5, 2.5])
beta = 1.0
# Expected results
expected_none = mx.array([0.125, 0.125, 0.0, 0.5])
expected_sum = mx.sum(expected_none)
expected_mean = mx.mean(expected_none)
# Test with reduction 'none'
loss_none = nn.losses.smooth_l1_loss(
predictions, targets, beta, reduction="none"
)
self.assertTrue(
mx.array_equal(loss_none, expected_none),
"Test case failed for smooth_l1_loss --reduction='none'",
)
# Test with reduction 'sum'
loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum")
self.assertEqual(
loss_sum,
expected_sum,
"Test case failed for smooth_l1_loss --reduction='sum'",
)
# Test with reduction 'mean'
loss_mean = nn.losses.smooth_l1_loss(
predictions, targets, beta, reduction="mean"
)
self.assertEqual(
loss_mean,
expected_mean,
"Test case failed for smooth_l1_loss --reduction='mean'",
)
def test_nll_loss(self):
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
targets = mx.array([0, 1])
# Test with reduction 'none'
losses_none = nn.losses.nll_loss(logits, targets, reduction="none")
expected_none = mx.array([0.0, 0.0])
self.assertTrue(mx.array_equal(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
# Test with reduction 'sum'
losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
def test_kl_div_loss(self):
p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
# Test with reduction 'none'
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
expected_none = mx.array([0.0, 0.831777])
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_triplet_loss(self):
anchors = mx.array([[1, 2, 3], [1, 2, 3]])
positives = mx.array([[4, 5, 6], [0, -1, 2]])
negatives = mx.array([[7, 8, 9], [3, 2, 3]])
# Test with reduction 'none'
losses_none = nn.losses.triplet_loss(
anchors, positives, negatives, reduction="none"
)
expected_none = mx.array([0, 2.31662])
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.triplet_loss(
anchors, positives, negatives, reduction="mean"
)
expected_mean = mx.mean(expected_none)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
losses_sum = nn.losses.triplet_loss(
anchors, positives, negatives, reduction="sum"
)
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_hinge_loss(self):
inputs = mx.ones((2, 4))
targets = mx.zeros((2, 4))
loss = nn.losses.hinge_loss(inputs, targets, reduction="mean")
self.assertEqual(loss, 1.0)
def test_huber_loss(self):
inputs = mx.ones((2, 4))
targets = mx.zeros((2, 4))
loss = nn.losses.huber_loss(inputs, targets, reduction="mean")
self.assertEqual(loss, 0.5)
def test_log_cosh_loss(self):
inputs = mx.ones((2, 4))
targets = mx.zeros((2, 4))
loss = nn.losses.log_cosh_loss(inputs, targets, reduction="mean")
self.assertAlmostEqual(loss.item(), 0.433781, places=6)
if __name__ == "__main__":
unittest.main()