2024-05-21 00:40:17 +08:00
|
|
|
Custom Extensions in MLX
|
|
|
|
========================
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
You can extend MLX with custom operations on the CPU or GPU. This guide
|
|
|
|
explains how to do that with a simple example.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Introducing the Example
|
|
|
|
-----------------------
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's say you would like an operation that takes in two arrays, ``x`` and
|
|
|
|
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
|
|
|
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
|
|
|
You can do that in MLX directly:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
|
|
|
|
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
|
|
|
return alpha * x + beta * y
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
This function performs that operation while leaving the implementation and
|
|
|
|
function transformations to MLX.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
However, you may want to customize the underlying implementation, perhaps to
|
|
|
|
make it faster. In this tutorial we will go through adding custom extensions.
|
|
|
|
It will cover:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
* The structure of the MLX library.
|
2025-03-21 06:37:22 +08:00
|
|
|
* Implementing a CPU operation.
|
2024-04-12 08:33:33 +08:00
|
|
|
* Implementing a GPU operation using metal.
|
|
|
|
* Adding the ``vjp`` and ``jvp`` function transformation.
|
|
|
|
* Building a custom extension and binding it to python.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Operations and Primitives
|
|
|
|
-------------------------
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Operations in MLX build the computation graph. Primitives provide the rules for
|
|
|
|
evaluating and transforming the graph. Let's start by discussing operations in
|
|
|
|
more detail.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Operations
|
|
|
|
^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Operations are the front-end functions that operate on arrays. They are defined
|
|
|
|
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
We would like an operation :meth:`axpby` that takes in two arrays, ``x`` and
|
2024-04-12 08:33:33 +08:00
|
|
|
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
|
|
|
C++:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
/**
|
2024-01-04 12:14:05 +08:00
|
|
|
* Scale and sum two vectors element-wise
|
2023-11-30 04:41:56 +08:00
|
|
|
* z = alpha * x + beta * y
|
|
|
|
*
|
2025-03-21 06:37:22 +08:00
|
|
|
* Use NumPy-style broadcasting between x and y
|
2023-11-30 04:41:56 +08:00
|
|
|
* Inputs are upcasted to floats if needed
|
|
|
|
**/
|
|
|
|
array axpby(
|
|
|
|
const array& x, // Input array x
|
|
|
|
const array& y, // Input array y
|
|
|
|
const float alpha, // Scaling factor for x
|
|
|
|
const float beta, // Scaling factor for y
|
|
|
|
StreamOrDevice s = {} // Stream on which to schedule the operation
|
|
|
|
);
|
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
The simplest way to implement this is with existing operations:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
array axpby(
|
|
|
|
const array& x, // Input array x
|
|
|
|
const array& y, // Input array y
|
|
|
|
const float alpha, // Scaling factor for x
|
|
|
|
const float beta, // Scaling factor for y
|
|
|
|
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
|
|
|
|
) {
|
|
|
|
// Scale x and y on the provided stream
|
|
|
|
auto ax = multiply(array(alpha), x, s);
|
|
|
|
auto by = multiply(array(beta), y, s);
|
2024-04-12 08:33:33 +08:00
|
|
|
|
2023-11-30 04:41:56 +08:00
|
|
|
// Add and return
|
|
|
|
return add(ax, by, s);
|
|
|
|
}
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
The operations themselves do not contain the implementations that act on the
|
|
|
|
data, nor do they contain the rules of transformations. Rather, they are an
|
|
|
|
easy to use interface that use :class:`Primitive` building blocks.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Primitives
|
|
|
|
^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
|
|
|
defines how to create outputs arrays given a input arrays. Further, a
|
|
|
|
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
|
|
|
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
|
|
|
more concrete:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
class Axpby : public Primitive {
|
|
|
|
public:
|
|
|
|
explicit Axpby(Stream stream, float alpha, float beta)
|
|
|
|
: Primitive(stream), alpha_(alpha), beta_(beta){};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A primitive must know how to evaluate itself on the CPU/GPU
|
|
|
|
* for the given inputs and populate the output array.
|
|
|
|
*
|
2023-12-07 00:13:20 +08:00
|
|
|
* To avoid unnecessary allocations, the evaluation function
|
2023-11-30 04:41:56 +08:00
|
|
|
* is responsible for allocating space for the array.
|
|
|
|
*/
|
2024-04-12 08:33:33 +08:00
|
|
|
void eval_cpu(
|
|
|
|
const std::vector<array>& inputs,
|
|
|
|
std::vector<array>& outputs) override;
|
|
|
|
void eval_gpu(
|
|
|
|
const std::vector<array>& inputs,
|
|
|
|
std::vector<array>& outputs) override;
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
/** The Jacobian-vector product. */
|
2024-04-12 08:33:33 +08:00
|
|
|
std::vector<array> jvp(
|
2023-11-30 04:41:56 +08:00
|
|
|
const std::vector<array>& primals,
|
|
|
|
const std::vector<array>& tangents,
|
|
|
|
const std::vector<int>& argnums) override;
|
|
|
|
|
|
|
|
/** The vector-Jacobian product. */
|
|
|
|
std::vector<array> vjp(
|
|
|
|
const std::vector<array>& primals,
|
|
|
|
const array& cotan,
|
2024-04-12 08:33:33 +08:00
|
|
|
const std::vector<int>& argnums,
|
|
|
|
const std::vector<array>& outputs) override;
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
/**
|
2023-12-18 05:23:03 +08:00
|
|
|
* The primitive must know how to vectorize itself across
|
2023-11-30 04:41:56 +08:00
|
|
|
* the given axes. The output is a pair containing the array
|
|
|
|
* representing the vectorized computation and the axis which
|
|
|
|
* corresponds to the output vectorized dimension.
|
|
|
|
*/
|
2024-04-12 08:33:33 +08:00
|
|
|
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
2023-11-30 04:41:56 +08:00
|
|
|
const std::vector<array>& inputs,
|
|
|
|
const std::vector<int>& axes) override;
|
|
|
|
|
|
|
|
/** Print the primitive. */
|
|
|
|
void print(std::ostream& os) override {
|
|
|
|
os << "Axpby";
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Equivalence check **/
|
|
|
|
bool is_equivalent(const Primitive& other) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
float alpha_;
|
|
|
|
float beta_;
|
|
|
|
};
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
|
|
|
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
|
|
|
implementations of how the output array is produced given the inputs through
|
|
|
|
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
|
|
|
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
|
|
|
:meth:`Axpby::vmap`.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Using the Primitive
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
|
|
|
computation graph. An :class:`array` can be constructed by providing its data
|
|
|
|
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
|
|
|
inputs that are passed to the primitive.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
array axpby(
|
|
|
|
const array& x, // Input array x
|
|
|
|
const array& y, // Input array y
|
|
|
|
const float alpha, // Scaling factor for x
|
|
|
|
const float beta, // Scaling factor for y
|
|
|
|
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
|
|
|
|
) {
|
|
|
|
// Promote dtypes between x and y as needed
|
|
|
|
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
|
|
|
|
|
|
|
// Upcast to float32 for non-floating point inputs x and y
|
2025-03-21 06:37:22 +08:00
|
|
|
auto out_dtype = issubdtype(promoted_dtype, float32)
|
2023-11-30 04:41:56 +08:00
|
|
|
? promoted_dtype
|
|
|
|
: promote_types(promoted_dtype, float32);
|
|
|
|
|
|
|
|
// Cast x and y up to the determined dtype (on the same stream s)
|
|
|
|
auto x_casted = astype(x, out_dtype, s);
|
|
|
|
auto y_casted = astype(y, out_dtype, s);
|
|
|
|
|
|
|
|
// Broadcast the shapes of x and y (on the same stream s)
|
|
|
|
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
|
|
|
|
auto out_shape = broadcasted_inputs[0].shape();
|
|
|
|
|
|
|
|
// Construct the array as the output of the Axpby primitive
|
|
|
|
// with the broadcasted and upcasted arrays as inputs
|
|
|
|
return array(
|
|
|
|
/* const std::vector<int>& shape = */ out_shape,
|
|
|
|
/* Dtype dtype = */ out_dtype,
|
|
|
|
/* std::unique_ptr<Primitive> primitive = */
|
2024-03-31 08:32:20 +08:00
|
|
|
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
2023-11-30 04:41:56 +08:00
|
|
|
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
This operation now handles the following:
|
|
|
|
|
2024-01-04 12:14:05 +08:00
|
|
|
#. Upcast inputs and resolve the output data type.
|
2023-11-30 04:41:56 +08:00
|
|
|
#. Broadcast the inputs and resolve the output shape.
|
|
|
|
#. Construct the primitive :class:`Axpby` using the given stream, ``alpha``, and ``beta``.
|
|
|
|
#. Construct the output :class:`array` using the primitive and the inputs.
|
|
|
|
|
|
|
|
Implementing the Primitive
|
|
|
|
--------------------------
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
No computation happens when we call the operation alone. The operation only
|
|
|
|
builds the computation graph. When we evaluate the output array, MLX schedules
|
|
|
|
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
|
|
|
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. warning::
|
|
|
|
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
|
|
|
no memory has been allocated for the output array. It falls on the implementation
|
2024-04-12 08:33:33 +08:00
|
|
|
of these functions to allocate memory as needed.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Implementing the CPU Back-end
|
2023-11-30 04:41:56 +08:00
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
Let's start by implementing :meth:`Axpby::eval_cpu`.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
The method will go over each element of the output array, find the
|
2024-04-12 08:33:33 +08:00
|
|
|
corresponding input elements of ``x`` and ``y`` and perform the operation
|
|
|
|
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
template <typename T>
|
|
|
|
void axpby_impl(
|
|
|
|
const mx::array& x,
|
|
|
|
const mx::array& y,
|
|
|
|
mx::array& out,
|
|
|
|
float alpha_,
|
|
|
|
float beta_,
|
|
|
|
mx::Stream stream) {
|
2025-03-25 04:24:41 +08:00
|
|
|
out.set_data(mx::allocator::malloc(out.nbytes()));
|
2025-03-21 06:37:22 +08:00
|
|
|
|
|
|
|
// Get the CPU command encoder and register input and output arrays
|
|
|
|
auto& encoder = mx::cpu::get_command_encoder(stream);
|
|
|
|
encoder.set_input_array(x);
|
|
|
|
encoder.set_input_array(y);
|
|
|
|
encoder.set_output_array(out);
|
|
|
|
|
|
|
|
// Launch the CPU kernel
|
|
|
|
encoder.dispatch([x_ptr = x.data<T>(),
|
|
|
|
y_ptr = y.data<T>(),
|
|
|
|
out_ptr = out.data<T>(),
|
|
|
|
size = out.size(),
|
|
|
|
shape = out.shape(),
|
|
|
|
x_strides = x.strides(),
|
|
|
|
y_strides = y.strides(),
|
|
|
|
alpha_,
|
|
|
|
beta_]() {
|
|
|
|
|
|
|
|
// Cast alpha and beta to the relevant types
|
|
|
|
T alpha = static_cast<T>(alpha_);
|
|
|
|
T beta = static_cast<T>(beta_);
|
|
|
|
|
|
|
|
// Do the element-wise operation for each output
|
|
|
|
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
|
|
|
// Map linear indices to offsets in x and y
|
|
|
|
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
|
|
|
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
|
|
|
|
|
|
|
// We allocate the output to be contiguous and regularly strided
|
|
|
|
// (defaults to row major) and hence it doesn't need additional mapping
|
|
|
|
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Our implementation should work for all incoming floating point arrays.
|
|
|
|
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
|
|
|
``complex64``. We throw an error if we encounter an unexpected type.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
void Axpby::eval_cpu(
|
2025-03-21 06:37:22 +08:00
|
|
|
const std::vector<mx::array>& inputs,
|
|
|
|
std::vector<mx::array>& outputs) {
|
|
|
|
auto& x = inputs[0];
|
|
|
|
auto& y = inputs[1];
|
|
|
|
auto& out = outputs[0];
|
|
|
|
|
|
|
|
// Dispatch to the correct dtype
|
|
|
|
if (out.dtype() == mx::float32) {
|
|
|
|
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
|
|
|
} else if (out.dtype() == mx::float16) {
|
|
|
|
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
|
|
|
} else if (out.dtype() == mx::bfloat16) {
|
|
|
|
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
|
|
|
} else if (out.dtype() == mx::complex64) {
|
|
|
|
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
|
|
|
} else {
|
|
|
|
throw std::runtime_error(
|
|
|
|
"Axpby is only supported for floating point types.");
|
|
|
|
}
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
|
|
|
you do not plan on running the operation on the GPU or using transforms on
|
|
|
|
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
2025-03-21 06:37:22 +08:00
|
|
|
primitive here.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Implementing the GPU Back-end
|
2023-11-30 04:41:56 +08:00
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
|
|
|
GPU kernels in MLX are written using Metal.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Here are some helpful resources if you are new to Metal:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
|
|
|
* Documentation for metal shading language: `Metal Specification`_
|
|
|
|
* Using metal from C++: `Metal-cpp`_
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
|
|
|
there are elements in the output. Each thread will pick the element it needs
|
|
|
|
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
|
|
|
element in the output.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
[[kernel]] void axpby_general(
|
|
|
|
device const T* x [[buffer(0)]],
|
|
|
|
device const T* y [[buffer(1)]],
|
|
|
|
device T* out [[buffer(2)]],
|
|
|
|
constant const float& alpha [[buffer(3)]],
|
|
|
|
constant const float& beta [[buffer(4)]],
|
|
|
|
constant const int* shape [[buffer(5)]],
|
2025-01-10 05:56:20 +08:00
|
|
|
constant const int64_t* x_strides [[buffer(6)]],
|
|
|
|
constant const int64_t* y_strides [[buffer(7)]],
|
2023-11-30 04:41:56 +08:00
|
|
|
constant const int& ndim [[buffer(8)]],
|
|
|
|
uint index [[thread_position_in_grid]]) {
|
|
|
|
// Convert linear indices to offsets in array
|
|
|
|
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
|
|
|
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
2024-04-12 08:33:33 +08:00
|
|
|
|
2023-11-30 04:41:56 +08:00
|
|
|
// Do the operation and update the output
|
2024-04-12 08:33:33 +08:00
|
|
|
out[index] =
|
2023-11-30 04:41:56 +08:00
|
|
|
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
|
|
|
}
|
|
|
|
|
|
|
|
We then need to instantiate this template for all floating point types and give
|
2024-04-12 08:33:33 +08:00
|
|
|
each instantiation a unique host name so we can identify it.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
2025-01-10 05:56:20 +08:00
|
|
|
instantiate_kernel("axpby_general_float32", axpby_general, float)
|
|
|
|
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
|
|
|
|
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
|
|
|
|
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
|
|
|
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
2023-11-30 04:41:56 +08:00
|
|
|
below.
|
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
/** Evaluate primitive on GPU */
|
2024-04-12 08:33:33 +08:00
|
|
|
void Axpby::eval_gpu(
|
|
|
|
const std::vector<array>& inputs,
|
|
|
|
std::vector<array>& outputs) {
|
2023-11-30 04:41:56 +08:00
|
|
|
// Prepare inputs
|
|
|
|
assert(inputs.size() == 2);
|
|
|
|
auto& x = inputs[0];
|
|
|
|
auto& y = inputs[1];
|
2024-04-12 08:33:33 +08:00
|
|
|
auto& out = outputs[0];
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// Each primitive carries the stream it should execute on
|
|
|
|
// and each stream carries its device identifiers
|
|
|
|
auto& s = stream();
|
|
|
|
// We get the needed metal device using the stream
|
|
|
|
auto& d = metal::device(s.device);
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
// Allocate output memory
|
2025-03-25 04:24:41 +08:00
|
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
// Resolve name of kernel
|
2023-11-30 04:41:56 +08:00
|
|
|
std::ostringstream kname;
|
|
|
|
kname << "axpby_" << "general_" << type_to_name(out);
|
|
|
|
|
2024-08-11 00:24:35 +08:00
|
|
|
// Make sure the metal library is available
|
|
|
|
d.register_library("mlx_ext");
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// Make a kernel from this metal library
|
|
|
|
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
|
|
|
|
|
|
|
// Prepare to encode kernel
|
2024-05-21 00:40:17 +08:00
|
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
2024-11-23 04:24:16 +08:00
|
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// Kernel parameters are registered with buffer indices corresponding to
|
2024-01-04 12:14:05 +08:00
|
|
|
// those in the kernel declaration at axpby.metal
|
2023-11-30 04:41:56 +08:00
|
|
|
int ndim = out.ndim();
|
|
|
|
size_t nelem = out.size();
|
|
|
|
|
|
|
|
// Encode input arrays to kernel
|
2024-05-21 00:40:17 +08:00
|
|
|
compute_encoder.set_input_array(x, 0);
|
|
|
|
compute_encoder.set_input_array(y, 1);
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// Encode output arrays to kernel
|
2024-05-21 00:40:17 +08:00
|
|
|
compute_encoder.set_output_array(out, 2);
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// Encode alpha and beta
|
2024-11-23 04:24:16 +08:00
|
|
|
compute_encoder.set_bytes(alpha_, 3);
|
|
|
|
compute_encoder.set_bytes(beta_, 4);
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
// Encode shape, strides and ndim
|
2024-11-23 04:24:16 +08:00
|
|
|
compute_encoder.set_vector_bytes(x.shape(), 5);
|
|
|
|
compute_encoder.set_vector_bytes(x.strides(), 6);
|
|
|
|
compute_encoder.set_bytes(y.strides(), 7);
|
|
|
|
compute_encoder.set_bytes(ndim, 8);
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// We launch 1 thread for each input and make sure that the number of
|
|
|
|
// threads in any given threadgroup is not higher than the max allowed
|
|
|
|
size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());
|
|
|
|
|
|
|
|
// Fix the 3D size of each threadgroup (in terms of threads)
|
|
|
|
MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);
|
|
|
|
|
|
|
|
// Fix the 3D size of the launch grid (in terms of threads)
|
|
|
|
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
|
|
|
|
|
2024-01-04 12:14:05 +08:00
|
|
|
// Launch the grid with the given number of threads divided among
|
2023-11-30 04:41:56 +08:00
|
|
|
// the given threadgroups
|
2024-11-23 04:24:16 +08:00
|
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
|
|
|
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
|
|
|
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
|
|
|
metal compute command encoder instead of building a new one and calling
|
|
|
|
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
|
|
|
pipelines) to the active command buffer until some specified limit is hit or
|
|
|
|
the command buffer needs to be flushed for synchronization.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Primitive Transforms
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Next, let's add implementations for transformations in a :class:`Primitive`.
|
|
|
|
These transformations can be built on top of other operations, including the
|
|
|
|
one we just defined:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
/** The Jacobian-vector product. */
|
2024-04-12 08:33:33 +08:00
|
|
|
std::vector<array> Axpby::jvp(
|
2023-11-30 04:41:56 +08:00
|
|
|
const std::vector<array>& primals,
|
|
|
|
const std::vector<array>& tangents,
|
|
|
|
const std::vector<int>& argnums) {
|
|
|
|
// Forward mode diff that pushes along the tangents
|
2024-01-04 12:14:05 +08:00
|
|
|
// The jvp transform on the primitive can built with ops
|
|
|
|
// that are scheduled on the same stream as the primitive
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
// If argnums = {0}, we only push along x in which case the
|
|
|
|
// jvp is just the tangent scaled by alpha
|
|
|
|
// Similarly, if argnums = {1}, the jvp is just the tangent
|
|
|
|
// scaled by beta
|
|
|
|
if (argnums.size() > 1) {
|
|
|
|
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
|
|
|
auto scale_arr = array(scale, tangents[0].dtype());
|
2024-04-12 08:33:33 +08:00
|
|
|
return {multiply(scale_arr, tangents[0], stream())};
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
// If, argnums = {0, 1}, we take contributions from both
|
|
|
|
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
|
|
|
else {
|
2024-04-12 08:33:33 +08:00
|
|
|
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
|
|
|
/** The vector-Jacobian product. */
|
|
|
|
std::vector<array> Axpby::vjp(
|
|
|
|
const std::vector<array>& primals,
|
2024-04-12 08:33:33 +08:00
|
|
|
const std::vector<array>& cotangents,
|
|
|
|
const std::vector<int>& argnums,
|
|
|
|
const std::vector<int>& /* unused */) {
|
2023-11-30 04:41:56 +08:00
|
|
|
// Reverse mode diff
|
|
|
|
std::vector<array> vjps;
|
|
|
|
for (auto arg : argnums) {
|
|
|
|
auto scale = arg == 0 ? alpha_ : beta_;
|
2024-04-12 08:33:33 +08:00
|
|
|
auto scale_arr = array(scale, cotangents[0].dtype());
|
|
|
|
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
return vjps;
|
|
|
|
}
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Note, a transformation does not need to be fully defined to start using
|
|
|
|
the :class:`Primitive`.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
2024-01-04 12:14:05 +08:00
|
|
|
/** Vectorize primitive along given axis */
|
2024-04-12 08:33:33 +08:00
|
|
|
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
2023-11-30 04:41:56 +08:00
|
|
|
const std::vector<array>& inputs,
|
|
|
|
const std::vector<int>& axes) {
|
2024-04-12 08:33:33 +08:00
|
|
|
throw std::runtime_error("[Axpby] vmap not implemented.");
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Building and Binding
|
|
|
|
--------------------
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's look at the overall directory structure first.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
| extensions
|
|
|
|
| ├── axpby
|
|
|
|
| │ ├── axpby.cpp
|
|
|
|
| │ ├── axpby.h
|
|
|
|
| │ └── axpby.metal
|
|
|
|
| ├── mlx_sample_extensions
|
|
|
|
| │ └── __init__.py
|
|
|
|
| ├── bindings.cpp
|
|
|
|
| ├── CMakeLists.txt
|
|
|
|
| └── setup.py
|
|
|
|
|
|
|
|
* ``extensions/axpby/`` defines the C++ extension library
|
2024-04-12 08:33:33 +08:00
|
|
|
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
|
|
|
associated Python package
|
|
|
|
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
|
|
|
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
|
|
|
Python bindings
|
2023-11-30 04:41:56 +08:00
|
|
|
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
2024-04-12 08:33:33 +08:00
|
|
|
the Python package
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Binding to Python
|
|
|
|
^^^^^^^^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
2024-02-09 04:44:23 +08:00
|
|
|
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
2024-04-12 08:33:33 +08:00
|
|
|
already provided, adding our :meth:`axpby` is simple.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: C++
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
NB_MODULE(_ext, m) {
|
|
|
|
m.doc() = "Sample extension for MLX";
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
m.def(
|
|
|
|
"axpby",
|
|
|
|
&axpby,
|
|
|
|
"x"_a,
|
|
|
|
"y"_a,
|
|
|
|
"alpha"_a,
|
|
|
|
"beta"_a,
|
2024-04-12 08:33:33 +08:00
|
|
|
nb::kw_only(),
|
|
|
|
"stream"_a = nb::none(),
|
|
|
|
R"(
|
2024-01-04 12:14:05 +08:00
|
|
|
Scale and sum two vectors element-wise
|
2023-11-30 04:41:56 +08:00
|
|
|
``z = alpha * x + beta * y``
|
2024-04-12 08:33:33 +08:00
|
|
|
|
2023-11-30 04:41:56 +08:00
|
|
|
Follows numpy style broadcasting between ``x`` and ``y``
|
|
|
|
Inputs are upcasted to floats if needed
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (array): Input array.
|
|
|
|
y (array): Input array.
|
|
|
|
alpha (float): Scaling factor for ``x``.
|
|
|
|
beta (float): Scaling factor for ``y``.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
array: ``alpha * x + beta * y``
|
2024-04-12 08:33:33 +08:00
|
|
|
)");
|
2023-11-30 04:41:56 +08:00
|
|
|
}
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Most of the complexity in the above example comes from additional bells and
|
2023-11-30 04:41:56 +08:00
|
|
|
whistles such as the literal names and doc-strings.
|
|
|
|
|
|
|
|
.. warning::
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
:mod:`mlx.core` must be imported before importing
|
|
|
|
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
|
|
|
ensure that the casters for :mod:`mlx.core` components like
|
2023-11-30 04:41:56 +08:00
|
|
|
:class:`mlx.core.array` are available.
|
|
|
|
|
|
|
|
.. _Building with CMake:
|
|
|
|
|
|
|
|
Building with CMake
|
|
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Building the C++ extension library only requires that you ``find_package(MLX
|
|
|
|
CONFIG)`` and then link it to your library.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: cmake
|
|
|
|
|
|
|
|
# Add library
|
|
|
|
add_library(mlx_ext)
|
|
|
|
|
|
|
|
# Add sources
|
|
|
|
target_sources(
|
|
|
|
mlx_ext
|
|
|
|
PUBLIC
|
|
|
|
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add include headers
|
|
|
|
target_include_directories(
|
|
|
|
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
|
|
|
|
)
|
|
|
|
|
|
|
|
# Link to mlx
|
|
|
|
target_link_libraries(mlx_ext PUBLIC mlx)
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
We also need to build the attached Metal library. For convenience, we provide a
|
|
|
|
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
|
|
|
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
|
|
|
automatically imported with MLX package).
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Here is what that looks like in practice:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: cmake
|
|
|
|
|
|
|
|
# Build metallib
|
|
|
|
if(MLX_BUILD_METAL)
|
|
|
|
|
|
|
|
mlx_build_metallib(
|
|
|
|
TARGET mlx_ext_metallib
|
|
|
|
TITLE mlx_ext
|
|
|
|
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
|
|
|
|
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
|
|
|
|
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
|
|
|
|
)
|
|
|
|
|
|
|
|
add_dependencies(
|
|
|
|
mlx_ext
|
|
|
|
mlx_ext_metallib
|
|
|
|
)
|
|
|
|
|
|
|
|
endif()
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Finally, we build the nanobind_ bindings
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: cmake
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
nanobind_add_module(
|
|
|
|
_ext
|
|
|
|
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
|
|
|
NB_DOMAIN mlx
|
|
|
|
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
2023-11-30 04:41:56 +08:00
|
|
|
)
|
2024-04-12 08:33:33 +08:00
|
|
|
target_link_libraries(_ext PRIVATE mlx_ext)
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
if(BUILD_SHARED_LIBS)
|
2024-04-12 08:33:33 +08:00
|
|
|
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
2023-11-30 04:41:56 +08:00
|
|
|
endif()
|
|
|
|
|
|
|
|
Building with ``setuptools``
|
2024-04-12 08:33:33 +08:00
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Once we have set out the CMake build rules as described above, we can use the
|
2024-04-12 08:33:33 +08:00
|
|
|
build utilities defined in :mod:`mlx.extension`:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
.. code-block:: python
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
from mlx import extension
|
|
|
|
from setuptools import setup
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
setup(
|
|
|
|
name="mlx_sample_extensions",
|
|
|
|
version="0.0.0",
|
|
|
|
description="Sample C++ and Metal extensions for MLX primitives.",
|
2024-04-12 08:33:33 +08:00
|
|
|
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
2023-11-30 04:41:56 +08:00
|
|
|
cmdclass={"build_ext": extension.CMakeBuild},
|
2024-04-12 08:33:33 +08:00
|
|
|
packages=["mlx_sample_extensions"],
|
|
|
|
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
|
|
|
extras_require={"dev":[]},
|
2023-11-30 04:41:56 +08:00
|
|
|
zip_safe=False,
|
2024-04-12 08:33:33 +08:00
|
|
|
python_requires=">=3.8",
|
2023-11-30 04:41:56 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
|
|
|
even though it only contains a ``__init__.py`` to ensure the following:
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
|
|
|
* The C++ extension library and the metal library are co-located with the python
|
|
|
|
bindings and copied together if the package is installed
|
|
|
|
|
|
|
|
To build the package, first install the build dependencies with ``pip install
|
|
|
|
-r requirements.txt``. You can then build inplace for development using
|
2023-11-30 04:41:56 +08:00
|
|
|
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
This results in the directory structure:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
| extensions
|
|
|
|
| ├── mlx_sample_extensions
|
|
|
|
| │ ├── __init__.py
|
|
|
|
| │ ├── libmlx_ext.dylib # C++ extension library
|
|
|
|
| │ ├── mlx_ext.metallib # Metal library
|
2024-04-12 08:33:33 +08:00
|
|
|
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
2023-11-30 04:41:56 +08:00
|
|
|
| ...
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
When you try to install using the command ``python -m pip install .`` (in
|
|
|
|
``extensions/``), the package will be installed with the same structure as
|
|
|
|
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
|
|
|
copied along with the Python binding since they are specified as
|
|
|
|
``package_data``.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Usage
|
|
|
|
-----
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
After installing the extension as described above, you should be able to simply
|
|
|
|
import the Python package and play with it as you would any other MLX operation.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's look at a simple script and its results:
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
from mlx_sample_extensions import axpby
|
|
|
|
|
|
|
|
a = mx.ones((3, 4))
|
|
|
|
b = mx.ones((3, 4))
|
|
|
|
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
|
|
|
|
|
|
|
print(f"c shape: {c.shape}")
|
|
|
|
print(f"c dtype: {c.dtype}")
|
2024-05-21 00:40:17 +08:00
|
|
|
print(f"c correct: {mx.all(c == 6.0).item()}")
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Output:
|
|
|
|
|
|
|
|
.. code-block::
|
|
|
|
|
|
|
|
c shape: [3, 4]
|
|
|
|
c dtype: float32
|
|
|
|
c correctness: True
|
|
|
|
|
|
|
|
Results
|
2024-04-12 08:33:33 +08:00
|
|
|
^^^^^^^
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
2025-03-21 06:37:22 +08:00
|
|
|
with the naive :meth:`simple_axpby` we first defined.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
.. code-block:: python
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
from mlx_sample_extensions import axpby
|
|
|
|
import time
|
|
|
|
|
|
|
|
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
|
|
|
return alpha * x + beta * y
|
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
M = 4096
|
|
|
|
N = 4096
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
x = mx.random.normal((M, N))
|
|
|
|
y = mx.random.normal((M, N))
|
|
|
|
alpha = 4.0
|
|
|
|
beta = 2.0
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
mx.eval(x, y)
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
def bench(f):
|
|
|
|
# Warm up
|
2025-03-21 06:37:22 +08:00
|
|
|
for i in range(5):
|
2023-11-30 04:41:56 +08:00
|
|
|
z = f(x, y, alpha, beta)
|
|
|
|
mx.eval(z)
|
|
|
|
|
|
|
|
# Timed run
|
|
|
|
s = time.time()
|
2025-03-21 06:37:22 +08:00
|
|
|
for i in range(100):
|
2023-11-30 04:41:56 +08:00
|
|
|
z = f(x, y, alpha, beta)
|
|
|
|
mx.eval(z)
|
|
|
|
e = time.time()
|
2025-03-21 06:37:22 +08:00
|
|
|
return 1000 * (e - s) / 100
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
simple_time = bench(simple_axpby)
|
|
|
|
custom_time = bench(axpby)
|
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
print(f"Simple axpby: {simple_time:.3f} ms | Custom axpby: {custom_time:.3f} ms")
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2025-03-21 06:37:22 +08:00
|
|
|
The results are ``Simple axpby: 1.559 ms | Custom axpby: 0.774 ms``. We see
|
2024-04-12 08:33:33 +08:00
|
|
|
modest improvements right away!
|
2023-11-30 04:41:56 +08:00
|
|
|
|
2024-02-09 04:44:23 +08:00
|
|
|
This operation is now good to be used to build other operations, in
|
|
|
|
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
2024-04-12 08:33:33 +08:00
|
|
|
:meth:`grad`.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
Scripts
|
|
|
|
-------
|
|
|
|
|
|
|
|
.. admonition:: Download the code
|
|
|
|
|
2024-04-12 08:33:33 +08:00
|
|
|
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
2023-11-30 04:41:56 +08:00
|
|
|
|
|
|
|
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
|
|
|
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
|
|
|
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
|
|
|
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
|
|
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
2024-04-12 08:33:33 +08:00
|
|
|
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|