2023-12-01 03:12:53 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
2023-11-30 02:52:08 +08:00
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
import mlx.core as mx
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
import os
|
|
|
|
import math
|
|
|
|
import subprocess
|
|
|
|
|
|
|
|
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
|
|
|
device_name = device_name.decode("utf-8").strip("\n")
|
|
|
|
|
|
|
|
N_warmup = 8
|
|
|
|
N_iter_bench = 80
|
|
|
|
N_iter_func = 5
|
|
|
|
|
|
|
|
|
|
|
|
def bench(f, a, b):
|
|
|
|
for i in range(N_warmup):
|
|
|
|
f(a, b)
|
|
|
|
torch.mps.synchronize()
|
|
|
|
|
|
|
|
s = time.perf_counter_ns()
|
|
|
|
for i in range(N_iter_bench):
|
|
|
|
f(a, b)
|
|
|
|
e = time.perf_counter_ns()
|
|
|
|
return (e - s) * 1e-9
|
|
|
|
|
|
|
|
|
|
|
|
def gemm_nn_mlx(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a @ b
|
|
|
|
ys.append(y)
|
|
|
|
mx.eval(ys)
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
def gemm_nt_mlx(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a @ b.transpose((0, 2, 1))
|
|
|
|
ys.append(y)
|
|
|
|
mx.eval(ys)
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
def gemm_tn_mlx(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a.transpose((0, 2, 1)) @ b
|
|
|
|
ys.append(y)
|
|
|
|
mx.eval(ys)
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
def gemm_tt_mlx(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a.transpose((0, 2, 1)) @ b.transpose((0, 2, 1))
|
|
|
|
ys.append(y)
|
|
|
|
mx.eval(ys)
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def gemm_nn_torch(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a @ b
|
|
|
|
ys.append(y)
|
|
|
|
torch.mps.synchronize()
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def gemm_nt_torch(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a @ b.transpose(-1, -2)
|
|
|
|
ys.append(y)
|
|
|
|
torch.mps.synchronize()
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def gemm_tn_torch(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a.transpose(-1, -2) @ b
|
|
|
|
ys.append(y)
|
|
|
|
torch.mps.synchronize()
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def gemm_tt_torch(a, b):
|
|
|
|
ys = []
|
|
|
|
for i in range(N_iter_func):
|
|
|
|
y = a.transpose(-1, -2) @ b.transpose(-1, -2)
|
|
|
|
ys.append(y)
|
|
|
|
torch.mps.synchronize()
|
|
|
|
return ys
|
|
|
|
|
|
|
|
|
|
|
|
def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
|
|
|
shape_a = (B, M, K) if transpose[0] == "n" else (B, K, M)
|
|
|
|
shape_b = (B, K, N) if transpose[1] == "n" else (B, N, K)
|
|
|
|
|
|
|
|
a_np = np.random.normal(0.0, 1.0 / math.sqrt(M + K), shape_a).astype(np_dtype)
|
|
|
|
b_np = np.random.normal(0.0, 1.0 / math.sqrt(N + K), shape_b).astype(np_dtype)
|
|
|
|
|
|
|
|
a_mx = mx.array(a_np)
|
|
|
|
b_mx = mx.array(b_np)
|
|
|
|
|
|
|
|
a_pt = torch.from_numpy(a_np).to("mps")
|
|
|
|
b_pt = torch.from_numpy(b_np).to("mps")
|
|
|
|
|
|
|
|
torch.mps.synchronize()
|
|
|
|
|
|
|
|
f_mx = {
|
|
|
|
"nn": gemm_nn_mlx,
|
|
|
|
"nt": gemm_nt_mlx,
|
|
|
|
"tn": gemm_tn_mlx,
|
|
|
|
"tt": gemm_tt_mlx,
|
|
|
|
}[transpose]
|
|
|
|
|
|
|
|
f_pt = {
|
|
|
|
"nn": gemm_nn_torch,
|
|
|
|
"nt": gemm_nt_torch,
|
|
|
|
"tn": gemm_tn_torch,
|
|
|
|
"tt": gemm_tt_torch,
|
|
|
|
}[transpose]
|
|
|
|
|
|
|
|
time_torch = bench(f_pt, a_pt, b_pt)
|
|
|
|
time_mlx = bench(f_mx, a_mx, b_mx)
|
|
|
|
|
|
|
|
t_a = (0, 1, 2) if transpose[0] == "n" else (0, 2, 1)
|
|
|
|
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
|
|
|
|
|
|
|
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
|
|
|
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
|
|
|
np.float32
|
|
|
|
)
|
|
|
|
|
|
|
|
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
|
|
|
|
|
|
|
if not np.allclose(c_mlx, c_npy.astype(np_dtype), atol=atol):
|
|
|
|
print(
|
|
|
|
f"Failed at {(B, M, N, K)} [transpose = {transpose}] with max(|a - b|) = {np.max(np.abs(c_npy - c_mlx))}"
|
|
|
|
)
|
|
|
|
|
|
|
|
return time_mlx, time_torch
|
|
|
|
|
|
|
|
|
|
|
|
def get_gflop_count(B, M, N, K):
|
|
|
|
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
|
|
|
|
|
|
|
dtypes = ("float32", "float16")
|
|
|
|
transposes = ("nn", "nt", "tn")
|
|
|
|
shapes = (
|
|
|
|
(16, 1024, 1024, 1024),
|
|
|
|
(1, 1024, 1024, 2048),
|
|
|
|
(4, 1024, 1024, 4096),
|
|
|
|
(4, 1024, 4096, 1024),
|
|
|
|
(1, 4096, 4096, 4096),
|
|
|
|
(15, 1023, 1023, 1023),
|
|
|
|
(17, 1025, 1025, 1025),
|
|
|
|
)
|
|
|
|
|
|
|
|
for dtype in dtypes:
|
|
|
|
for transpose in transposes:
|
|
|
|
for B, M, N, K in shapes:
|
|
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
time_mlx, time_torch = bench_shape(B, M, N, K, np_dtype, transpose)
|
|
|
|
|
|
|
|
gflop_count = get_gflop_count(B, M, N, K)
|
|
|
|
gflops_mx = gflop_count / (time_mlx)
|
|
|
|
gflops_pt = gflop_count / (time_torch)
|
|
|
|
diff = gflops_mx / gflops_pt - 1.0
|
|
|
|
|
|
|
|
print(
|
|
|
|
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
|
|
|
)
|
|
|
|
if gflops_pt >= 2.0 * gflops_mx:
|
|
|
|
print("ATTENTION ^^^^^^^")
|