mlx/benchmarks/python/comparative/bench_mlx.py

316 lines
6.9 KiB
Python
Raw Normal View History

2023-12-01 03:12:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 02:30:41 +08:00
import argparse
import math
import os
import time
import mlx.core as mx
def int_or_list(x):
try:
return int(x)
except ValueError:
return [int(xi) for xi in x.split(",")]
def none_or_list(x):
if x == "":
return None
else:
return [int(xi) for xi in x.split(",")]
def bench(f, *args):
for i in range(10):
f(*args)
s = time.time()
for i in range(100):
f(*args)
e = time.time()
return e - s
def matmul_square(x):
y = x
for i in range(10):
y = y @ x
mx.eval(y)
return y
def matmul(x, y):
ys = []
for i in range(10):
ys.append(x @ y)
mx.eval(ys)
def conv1d(x, y):
ys = []
for i in range(10):
ys.append(mx.conv1d(x, y))
mx.eval(ys)
def conv2d(x, y):
ys = []
for i in range(10):
ys.append(mx.conv2d(x, y))
mx.eval(ys)
def binary(op, x, y):
for i in range(100):
y = getattr(mx, op)(x, y)
mx.eval(y)
def reduction(op, axis, x):
ys = []
for i in range(100):
ys.append(getattr(mx, op)(x, axis=axis))
mx.eval(ys)
def softmax(axis, x):
ys = []
for i in range(100):
ex = mx.exp(x - mx.max(x, axis=axis, keepdims=True))
y = ex / mx.sum(ex, axis=axis, keepdims=True)
ys.append(y)
mx.eval(ys)
def softmax_fused(axis, x):
ys = []
for i in range(100):
y = mx.softmax(x, axis=axis)
ys.append(y)
mx.eval(ys)
def relu(x):
y = x
for i in range(100):
y = mx.maximum(y, 0)
mx.eval(y)
def scalar_mult(x):
y = x
for i in range(100):
y = y * (1.0 / (1 + i))
mx.eval(y)
def cross_entropy(targets, x):
ys = []
for i in range(100):
y = mx.logsumexp(x, axis=-1, keepdims=True) - mx.take_along_axis(
x, mx.reshape(targets, (-1, 1)), axis=-1
)
ys.append(mx.mean(y))
mx.eval(ys)
def logsumexp(axis, x):
ys = []
for i in range(100):
ys.append(mx.logsumexp(x, axis=axis))
mx.eval(ys)
def linear(w, b, x):
ys = []
for i in range(10):
ys.append(x @ mx.transpose(w, (1, 0)) + b)
mx.eval(ys)
def rope(x):
*_, N, D = x.shape
ys = []
for i in range(10):
shape = x.shape
x = mx.reshape(x, (-1, N, D))
positions = mx.arange(N)
freqs = mx.exp(mx.arange(0.0, D // 2) / math.log(10000 / (D // 2 - 1)))
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
costheta = mx.cos(theta)
sintheta = mx.sin(theta)
x1 = x[..., ::2]
x2 = x[..., 1::2]
rx1 = x1 * costheta - x2 * sintheta
rx2 = x1 * sintheta + x2 * costheta
y = mx.concatenate([rx1[..., None], rx2[..., None]], axis=-1)
y = mx.reshape(y, (-1, N, D))
ys.append(y)
mx.eval(ys)
def concatenate(axis, x, y):
ys = []
for i in range(10):
ys.append(mx.concatenate([x, y], axis=axis))
mx.eval(ys)
def cumsum(axis, x):
ys = []
for i in range(10):
ys.append(mx.cumsum(x, axis))
mx.eval(ys)
def sort(axis, x):
ys = []
for i in range(10):
ys.append(mx.sort(x, axis))
mx.eval(ys)
def topk(axis, x):
k = x.shape[axis] // 3
ys = []
for i in range(10):
ys.append(mx.topk(x, k, axis))
mx.eval(ys)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("benchmark", help="Choose the benchmark to run")
parser.add_argument(
"--size",
default=[(1024, 1024)],
type=lambda x: list(map(int, x.split("x"))),
help="Set the matrix size",
action="append",
)
parser.add_argument(
"--axis",
default=[1],
type=int_or_list,
help="Set a reduction axis",
action="append",
)
parser.add_argument(
"--transpose",
type=none_or_list,
default=[],
help="Permute the matrix",
action="append",
)
parser.add_argument(
"--print-pid", action="store_true", help="Print the PID and pause"
)
parser.add_argument("--cpu", action="store_true", help="Use the CPU")
parser.add_argument(
"--fused", action="store_true", help="Use fused functions where possible"
)
parser.add_argument(
"--dtype", choices=["float32", "float16", "bfloat16"], default="float32"
)
args = parser.parse_args()
if len(args.size) > 1:
args.size.pop(0)
if len(args.axis) > 1:
args.axis.pop(0)
if args.print_pid:
print(os.getpid())
input("Press enter to run")
if args.cpu:
mx.set_default_device(mx.cpu)
else:
mx.set_default_device(mx.gpu)
dtype = dict(float32=mx.float32, float16=mx.float16, bfloat16=mx.bfloat16)[
args.dtype
]
xs = []
for size in args.size:
xs.append(mx.random.normal(size).astype(dtype))
for i, t in enumerate(args.transpose):
if t is None:
continue
xs[i] = mx.transpose(xs[i], t)
mx.eval(xs)
x = xs[0]
axis = args.axis[0]
if args.benchmark == "matmul_square":
print(bench(matmul_square, x))
elif args.benchmark == "matmul":
print(bench(matmul, *xs))
elif args.benchmark == "linear":
print(bench(linear, *xs))
elif args.benchmark == "sum_axis":
print(bench(reduction, "sum", axis, x))
elif args.benchmark == "sum_all":
print(bench(reduction, "sum", None, x))
elif args.benchmark == "argmax":
print(bench(reduction, "argmax", axis, x))
elif args.benchmark == "add":
print(bench(binary, "add", *xs))
elif args.benchmark == "mul":
print(bench(binary, "multiply", *xs))
elif args.benchmark == "softmax":
if args.fused:
print(bench(softmax_fused, axis, x))
else:
print(bench(softmax, axis, x))
elif args.benchmark == "relu":
print(bench(relu, x))
elif args.benchmark == "scalar_mul":
print(bench(scalar_mult, x))
elif args.benchmark == "cross_entropy":
if len(size) != 2:
raise ValueError("Error: [cross_entropy] benchmark requires a 2 dim size")
targets = mx.zeros((len(x),), dtype=mx.uint32)
print(bench(cross_entropy, targets, x))
elif args.benchmark == "logsumexp":
print(bench(logsumexp, axis, x))
elif args.benchmark == "rope":
print(bench(rope, x))
elif args.benchmark == "concatenate":
print(bench(concatenate, axis, *xs))
elif args.benchmark == "cumsum":
print(bench(cumsum, axis, *xs))
elif args.benchmark == "conv1d":
print(bench(conv1d, *xs))
elif args.benchmark == "conv2d":
print(bench(conv2d, *xs))
elif args.benchmark == "sort":
print(bench(sort, axis, x))
elif args.benchmark == "topk":
print(bench(topk, axis, x))
else:
raise ValueError("Unknown benchmark")