mlx/benchmarks/python/llama_mlx_bench.py

119 lines
3.6 KiB
Python
Raw Normal View History

2023-12-01 03:12:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 02:52:08 +08:00
import math
import time
import mlx.core as mx
import mlx.nn as nn
import mlx.utils
class LlamaAttention(nn.Module):
def __init__(self, dims: int, num_heads: int):
super().__init__()
self.num_heads = num_heads
self.rope = nn.RoPE(dims // num_heads, True)
self.query_proj = nn.Linear(dims, dims, False)
self.key_proj = nn.Linear(dims, dims, False)
self.value_proj = nn.Linear(dims, dims, False)
self.out_proj = nn.Linear(dims, dims, False)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
queries = mx.transpose(mx.reshape(queries, (B, L, num_heads, -1)), (0, 2, 1, 3))
keys = mx.transpose(mx.reshape(keys, (B, L, num_heads, -1)), (0, 2, 1, 3))
values = mx.transpose(mx.reshape(values, (B, L, num_heads, -1)), (0, 2, 1, 3))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Dimensions are [batch x num heads x sequence x hidden dim]
scale = mx.array(math.sqrt(1 / queries.shape[-1]), dtype=queries.dtype)
scores = (queries * scale) @ mx.transpose(keys, (0, 1, 3, 2))
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1)
values_hat = mx.reshape(mx.transpose(scores @ values, (0, 2, 1, 3)), (B, L, -1))
return self.out_proj(values_hat), (keys, values)
class LlamaEncoderLayer(nn.Module):
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
super().__init__()
self.attention = LlamaAttention(dims, num_heads)
self.norm1 = nn.RMSNorm(dims)
self.norm2 = nn.RMSNorm(dims)
self.linear1 = nn.Linear(dims, mlp_dims, False)
self.linear2 = nn.Linear(dims, mlp_dims, False)
self.linear3 = nn.Linear(mlp_dims, dims, False)
def __call__(self, x, mask=None, cache=None):
y = self.norm1(x)
y, cache = self.attention(y, y, y, mask, cache)
x = x + y
y = self.norm2(x)
a = self.linear1(y)
b = self.linear2(y)
y = a * mx.sigmoid(a) * b
y = self.linear3(y)
x = x + y
return x, cache
def measure(model, x, cache):
for i in range(5):
y, c = model(x, mask=None, cache=cache)
mx.eval(y, c)
start = time.time()
rs = []
for i in range(5):
y, c = model(x, mask=None, cache=cache)
rs.append((y, c))
mx.eval(rs)
end = time.time()
return (end - start) * 1000 / 5
if __name__ == "__main__":
H = 32
D = 4096
F = 43 * 256
C = 1000
mx.set_default_device(mx.gpu)
dtype = mx.float16
layer = LlamaEncoderLayer(D, F, H)
layer.update(mlx.utils.tree_map(lambda x: x.astype(dtype), layer.parameters()))
k1, k2, k3 = mx.random.split(mx.random.key(0), 3)
x = mx.random.normal([1, 1, D], dtype=dtype)
cache = [
mx.random.normal([1, H, C, D // H], dtype=dtype),
mx.random.normal([1, H, C, D // H], dtype=dtype),
]
mx.eval(x, cache)
T = measure(layer, x, cache)
print("Time per layer per token:", T, "ms")
print("Lower bound total time per token:", T * 32, "ms")