2023-12-01 03:12:53 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
2023-11-30 02:30:41 +08:00
|
|
|
import math
|
|
|
|
import time
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.mps
|
|
|
|
|
|
|
|
|
|
|
|
def sync_if_needed(x):
|
|
|
|
if x.device != torch.device("cpu"):
|
|
|
|
torch.mps.synchronize()
|
|
|
|
|
|
|
|
|
|
|
|
class RoPE(nn.Module):
|
|
|
|
def __init__(self, dims: int, traditional: bool = False):
|
|
|
|
super().__init__()
|
|
|
|
self.dims = dims
|
|
|
|
self.traditional = traditional
|
|
|
|
|
|
|
|
def _compute_rope(self, costheta, sintheta, x):
|
|
|
|
x1 = x[..., : self.dims // 2]
|
|
|
|
x2 = x[..., self.dims // 2 : self.dims]
|
|
|
|
rx1 = x1 * costheta - x2 * sintheta
|
|
|
|
rx2 = x1 * sintheta + x2 * costheta
|
|
|
|
|
|
|
|
if self.dims < x.shape[-1]:
|
|
|
|
rx = torch.cat([rx1, rx2, x[..., self.dims :]], dim=-1)
|
|
|
|
else:
|
|
|
|
rx = torch.cat([rx1, rx2], dim=-1)
|
|
|
|
|
|
|
|
return rx
|
|
|
|
|
|
|
|
def _compute_traditional_rope(self, costheta, sintheta, x):
|
|
|
|
x1 = x[..., ::2]
|
|
|
|
x2 = x[..., 1::2]
|
|
|
|
rx1 = x1 * costheta - x2 * sintheta
|
|
|
|
rx2 = x1 * sintheta + x2 * costheta
|
|
|
|
|
|
|
|
if self.dims < x.shape[-1]:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"RoPE doesn't implement partial traditional application"
|
|
|
|
)
|
|
|
|
|
|
|
|
rx = torch.cat([rx1[..., None], rx2[..., None]], dim=-1)
|
|
|
|
|
|
|
|
return rx
|
|
|
|
|
|
|
|
def forward(self, x, offset: int = 0):
|
|
|
|
shape = x.shape
|
|
|
|
x = x.view(-1, shape[-2], shape[-1])
|
|
|
|
N = x.shape[1] + offset
|
|
|
|
costheta, sintheta = RoPE.create_cos_sin_theta(
|
|
|
|
N, self.dims, offset=offset, device=x.device, dtype=x.dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
rope = (
|
|
|
|
self._compute_traditional_rope if self.traditional else self._compute_rope
|
|
|
|
)
|
|
|
|
rx = rope(costheta, sintheta, x)
|
|
|
|
|
|
|
|
return rx.view(*shape)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_cos_sin_theta(
|
|
|
|
N: int,
|
|
|
|
D: int,
|
|
|
|
offset: int = 0,
|
|
|
|
base: float = 10000,
|
|
|
|
device="cpu",
|
|
|
|
dtype=torch.float32,
|
|
|
|
):
|
|
|
|
D = D // 2
|
|
|
|
positions = torch.arange(offset, N, dtype=dtype, device=device)
|
|
|
|
freqs = torch.exp(
|
|
|
|
-torch.arange(0, D, dtype=dtype, device=device) * (math.log(base) / D)
|
|
|
|
)
|
|
|
|
theta = positions.view(-1, 1) * freqs.view(1, -1)
|
|
|
|
costheta = torch.cos(theta)
|
|
|
|
sintheta = torch.sin(theta)
|
|
|
|
|
|
|
|
return costheta, sintheta
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
|
|
def __init__(self, dims: int, epsilon: float = 1e-6):
|
|
|
|
super().__init__()
|
|
|
|
self.gamma = nn.Parameter(torch.ones((dims,)))
|
|
|
|
self.epsilon = epsilon
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
n = torch.rsqrt(x.square().mean(dim=-1, keepdims=True) + self.epsilon)
|
|
|
|
return self.gamma * x * n
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaAttention(nn.Module):
|
|
|
|
def __init__(self, dims: int, num_heads: int):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.rope = RoPE(dims // num_heads, True)
|
|
|
|
self.query_proj = nn.Linear(dims, dims, bias=False)
|
|
|
|
self.key_proj = nn.Linear(dims, dims, bias=False)
|
|
|
|
self.value_proj = nn.Linear(dims, dims, bias=False)
|
|
|
|
self.out_proj = nn.Linear(dims, dims, bias=False)
|
|
|
|
|
|
|
|
def forward(self, queries, keys, values, mask=None, cache=None):
|
|
|
|
queries = self.query_proj(queries)
|
|
|
|
keys = self.key_proj(keys)
|
|
|
|
values = self.value_proj(values)
|
|
|
|
|
|
|
|
num_heads = self.num_heads
|
|
|
|
B, L, D = queries.shape
|
|
|
|
queries = queries.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
|
|
|
keys = keys.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
|
|
|
values = values.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
key_cache, value_cache = cache
|
|
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
|
|
keys = torch.cat([key_cache, keys], dim=2)
|
|
|
|
values = torch.cat([value_cache, values], dim=2)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
|
|
|
# Dimensions are [batch x num heads x sequence x hidden dim]
|
|
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
|
|
scores = (queries * scale) @ keys.permute(0, 1, 3, 2)
|
|
|
|
if mask is not None:
|
|
|
|
scores = scores + mask
|
|
|
|
scores = torch.softmax(scores, dim=-1)
|
|
|
|
values_hat = (scores @ values).permute(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
|
|
|
|
return self.out_proj(values_hat), (keys, values)
|
|
|
|
|
|
|
|
|
|
|
|
class LlamaEncoderLayer(nn.Module):
|
|
|
|
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.attention = LlamaAttention(dims, num_heads)
|
|
|
|
|
|
|
|
self.norm1 = RMSNorm(dims)
|
|
|
|
self.norm2 = RMSNorm(dims)
|
|
|
|
|
|
|
|
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
|
|
|
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
|
|
|
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x, mask=None, cache=None):
|
|
|
|
y = self.norm1(x)
|
|
|
|
y, cache = self.attention(y, y, y, mask, cache)
|
|
|
|
x = x + y
|
|
|
|
|
|
|
|
y = self.norm2(x)
|
|
|
|
a = self.linear1(y)
|
|
|
|
b = self.linear2(y)
|
|
|
|
y = torch.nn.functional.silu(a) * b
|
|
|
|
y = self.linear3(y)
|
|
|
|
x = x + y
|
|
|
|
|
|
|
|
return x, cache
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def measure(model, x, cache):
|
|
|
|
for i in range(5):
|
|
|
|
y, c = model(x, mask=None, cache=cache)
|
|
|
|
sync_if_needed(x)
|
|
|
|
|
|
|
|
start = time.time()
|
|
|
|
for i in range(5):
|
|
|
|
y, c = model(x, mask=None, cache=cache)
|
|
|
|
sync_if_needed(x)
|
|
|
|
end = time.time()
|
|
|
|
return (end - start) * 1000 / 5
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
H = 32
|
|
|
|
D = 4096
|
|
|
|
F = 43 * 256
|
|
|
|
C = 1000
|
|
|
|
device = torch.device("mps")
|
|
|
|
dtype = torch.float16
|
|
|
|
|
|
|
|
layer = LlamaEncoderLayer(D, F, H).to(device).to(dtype)
|
|
|
|
x = torch.randn(1, 1, D).to(device).to(dtype)
|
|
|
|
cache = [
|
|
|
|
torch.randn(1, H, C, D // H).to(device).to(dtype),
|
|
|
|
torch.randn(1, H, C, D // H).to(device).to(dtype),
|
|
|
|
]
|
|
|
|
|
|
|
|
T = measure(layer, x, cache)
|
|
|
|
|
|
|
|
print("Time per layer per token:", T, "ms")
|
|
|
|
print("Lower bound total time per token:", T * 32, "ms")
|