mlx/python/tests/test_fast_sdpa.py

104 lines
3.2 KiB
Python
Raw Normal View History

Fast Inference SDPA op (#735) * Fast Inference SDPA op Implements metal shaders for: o = mx.fast_inference_sdpa(queries, keys, values, scale, mask) Supports fp16, fp32 dtypes; assumes d_k = 128. Generic op support / prompt encoding supported via mlx primitives. Metal implementation is for the inference use case only. Majority of performance benefits appears to results from GQA & reduced bandwidth requirements; there is approximate performance parity for the MHA use case (from some measurements on M3 Max). * Flush shared memory to zero before unprotected reads for (scores @ values) * Move to fast:: namespace, address reviewer comments ... also attempt to revert formatter auto-change for files not relevant to this change * Shared memory flush to top of kernel * Resolve compiler warnings * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update docstring per PR feedback * Softmax in higher precision, ... * route to fallback for more use cases - batch size > 1, head_dim other than 128, etc. * Address linux build failure * Address other reviewer comments * Remove extraneous eval_cpu function per review --------- Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com> Co-authored-by: Awni Hannun <awni.hannun@gmail.com> Co-authored-by: atila <atiorh@icloud.com>
2024-03-05 13:06:11 +08:00
import math
import unittest
import mlx.core as mx
import mlx_tests
import numpy as np
# SDPA for MHA (n_heads == n_kv_heads)
def mlx_primitives_sdpa(q, k, v, scale):
p = (q * scale) @ k.transpose(0, 1, 3, 2)
scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype)
return scores @ v
# SDPA for GQA (n_heads > n_kv_heads, n_kv_heads > 1, n_heads % n_kv_heads == 0)
def mlx_primitives_sdpa_with_gqa(q, k, v, scale):
n_repeats = q.shape[1] // k.shape[1]
# borrowing kv cache tiling from mlx-examples/llms/mistral/mistral.py
n_heads = q.shape[1]
B = q.shape[0]
L = k.shape[2]
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * n_repeats, axis=2)
return a.reshape([B, n_heads, L, -1])
k, v = map(repeat, (k, v))
return mlx_primitives_sdpa(q, k, v, scale)
2024-03-05 15:02:27 +08:00
class TestFastSDPA(mlx_tests.MLXTestCase):
def test_fast_sdpa(self):
Fast Inference SDPA op (#735) * Fast Inference SDPA op Implements metal shaders for: o = mx.fast_inference_sdpa(queries, keys, values, scale, mask) Supports fp16, fp32 dtypes; assumes d_k = 128. Generic op support / prompt encoding supported via mlx primitives. Metal implementation is for the inference use case only. Majority of performance benefits appears to results from GQA & reduced bandwidth requirements; there is approximate performance parity for the MHA use case (from some measurements on M3 Max). * Flush shared memory to zero before unprotected reads for (scores @ values) * Move to fast:: namespace, address reviewer comments ... also attempt to revert formatter auto-change for files not relevant to this change * Shared memory flush to top of kernel * Resolve compiler warnings * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update docstring per PR feedback * Softmax in higher precision, ... * route to fallback for more use cases - batch size > 1, head_dim other than 128, etc. * Address linux build failure * Address other reviewer comments * Remove extraneous eval_cpu function per review --------- Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com> Co-authored-by: Awni Hannun <awni.hannun@gmail.com> Co-authored-by: atila <atiorh@icloud.com>
2024-03-05 13:06:11 +08:00
# Not yet supported:
# * K pre-transposed in kernel, V pre-transposed in kernel
np.random.seed(0)
L = 43
R = 1
Dk = 128
scale = float(1.0 / np.sqrt(128.0))
q_npy = np.random.normal(0.0, 1.0, (1, 32, R, Dk)).astype(np.float32)
k_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
v_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
q_mlx = mx.array(q_npy)
k_mlx = mx.array(k_npy)
v_mlx = mx.array(v_npy)
reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
o_mlx = mx.fast.scaled_dot_product_attention(
q_mlx, k_mlx, v_mlx, scale=scale, mask=None
)
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
B = 1
H = 32
2024-03-05 15:02:27 +08:00
dtypes = [np.float32]
if not self.is_linux:
dtypes.append(np.half)
Fast Inference SDPA op (#735) * Fast Inference SDPA op Implements metal shaders for: o = mx.fast_inference_sdpa(queries, keys, values, scale, mask) Supports fp16, fp32 dtypes; assumes d_k = 128. Generic op support / prompt encoding supported via mlx primitives. Metal implementation is for the inference use case only. Majority of performance benefits appears to results from GQA & reduced bandwidth requirements; there is approximate performance parity for the MHA use case (from some measurements on M3 Max). * Flush shared memory to zero before unprotected reads for (scores @ values) * Move to fast:: namespace, address reviewer comments ... also attempt to revert formatter auto-change for files not relevant to this change * Shared memory flush to top of kernel * Resolve compiler warnings * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update docstring per PR feedback * Softmax in higher precision, ... * route to fallback for more use cases - batch size > 1, head_dim other than 128, etc. * Address linux build failure * Address other reviewer comments * Remove extraneous eval_cpu function per review --------- Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com> Co-authored-by: Awni Hannun <awni.hannun@gmail.com> Co-authored-by: atila <atiorh@icloud.com>
2024-03-05 13:06:11 +08:00
for SEQUENCE_LENGTH in [1, 7, 9, 32, 63, 67, 129, 400, 2000]:
for DO_GQA in [0, 1]:
2024-03-05 15:02:27 +08:00
for DTYPE in dtypes:
Fast Inference SDPA op (#735) * Fast Inference SDPA op Implements metal shaders for: o = mx.fast_inference_sdpa(queries, keys, values, scale, mask) Supports fp16, fp32 dtypes; assumes d_k = 128. Generic op support / prompt encoding supported via mlx primitives. Metal implementation is for the inference use case only. Majority of performance benefits appears to results from GQA & reduced bandwidth requirements; there is approximate performance parity for the MHA use case (from some measurements on M3 Max). * Flush shared memory to zero before unprotected reads for (scores @ values) * Move to fast:: namespace, address reviewer comments ... also attempt to revert formatter auto-change for files not relevant to this change * Shared memory flush to top of kernel * Resolve compiler warnings * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update docstring per PR feedback * Softmax in higher precision, ... * route to fallback for more use cases - batch size > 1, head_dim other than 128, etc. * Address linux build failure * Address other reviewer comments * Remove extraneous eval_cpu function per review --------- Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com> Co-authored-by: Awni Hannun <awni.hannun@gmail.com> Co-authored-by: atila <atiorh@icloud.com>
2024-03-05 13:06:11 +08:00
n_kv_heads = 8 if DO_GQA else 32
q_npy = np.random.normal(0.0, 1.0, (B, H, R, Dk)).astype(DTYPE)
k_npy = np.random.normal(
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
).astype(DTYPE)
v_npy = np.random.normal(
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
).astype(DTYPE)
q_mlx = mx.array(q_npy)
k_mlx = mx.array(k_npy)
v_mlx = mx.array(v_npy)
reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
o_mlx = mx.fast.scaled_dot_product_attention(
q_mlx, k_mlx, v_mlx, scale=scale
)
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
rtol = 1e-5
atol = 1e-1
if SEQUENCE_LENGTH > 500:
rtol = 1e-2
if DTYPE == np.half:
rtol = 1e-2
self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
if __name__ == "__main__":
unittest.main(failfast=True)