mlx/tests/test_metal_svd.cpp

221 lines
5.9 KiB
C++
Raw Normal View History

#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test metal svd basic functionality") {
// Test basic SVD computation
array a = array({1.0f, 2.0f, 2.0f, 3.0f}, {2, 2});
// Test singular values only
{
auto s = linalg::svd(a, false);
CHECK(s.size() == 1);
CHECK(s[0].shape() == std::vector<int>{2});
CHECK(s[0].dtype() == float32);
}
// Test full SVD
{
auto [u, s, vt] = linalg::svd(a, true);
CHECK(u.shape() == std::vector<int>{2, 2});
CHECK(s.shape() == std::vector<int>{2});
CHECK(vt.shape() == std::vector<int>{2, 2});
CHECK(u.dtype() == float32);
CHECK(s.dtype() == float32);
CHECK(vt.dtype() == float32);
}
}
TEST_CASE("test metal svd input validation") {
// Test invalid dimensions
{
array a = array({1.0f, 2.0f, 3.0f}, {3}); // 1D array
CHECK_THROWS_AS(linalg::svd(a), std::invalid_argument);
}
// Test invalid dtype
{
array a = array({1, 2, 2, 3}, {2, 2}); // int32 array
CHECK_THROWS_AS(linalg::svd(a), std::invalid_argument);
}
// Test empty matrix
{
array a = array({}, {0, 0});
CHECK_THROWS_AS(linalg::svd(a), std::invalid_argument);
}
}
TEST_CASE("test metal svd matrix sizes") {
// Test various matrix sizes
std::vector<std::pair<int, int>> sizes = {
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{2, 3},
{3, 2},
{4, 6},
{6, 4},
{8, 8},
{16, 16},
{32, 32}};
for (auto [m, n] : sizes) {
SUBCASE(("Matrix size " + std::to_string(m) + "x" + std::to_string(n))
.c_str()) {
// Create random matrix
array a = random::normal({m, n}, float32);
// Test that SVD doesn't crash
auto [u, s, vt] = linalg::svd(a, true);
// Check output shapes
CHECK(u.shape() == std::vector<int>{m, m});
CHECK(s.shape() == std::vector<int>{std::min(m, n)});
CHECK(vt.shape() == std::vector<int>{n, n});
// Check that singular values are non-negative and sorted
auto s_data = s.data<float>();
for (int i = 0; i < s.size(); i++) {
CHECK(s_data[i] >= 0.0f);
if (i > 0) {
CHECK(s_data[i] <= s_data[i - 1]); // Descending order
}
}
}
}
}
TEST_CASE("test metal svd double precision") {
array a = array({1.0, 2.0, 2.0, 3.0}, {2, 2});
a = a.astype(float64);
auto [u, s, vt] = linalg::svd(a, true);
CHECK(u.dtype() == float64);
CHECK(s.dtype() == float64);
CHECK(vt.dtype() == float64);
}
TEST_CASE("test metal svd batch processing") {
// Test batch of matrices
array a = random::normal({3, 4, 5}, float32); // 3 matrices of size 4x5
auto [u, s, vt] = linalg::svd(a, true);
CHECK(u.shape() == std::vector<int>{3, 4, 4});
CHECK(s.shape() == std::vector<int>{3, 4});
CHECK(vt.shape() == std::vector<int>{3, 5, 5});
}
TEST_CASE("test metal svd reconstruction") {
// Test that U * S * V^T ≈ A
array a =
array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}, {3, 3});
auto [u, s, vt] = linalg::svd(a, true);
// Reconstruct: A_reconstructed = U @ diag(S) @ V^T
array s_diag = diag(s);
array reconstructed = matmul(matmul(u, s_diag), vt);
// Check reconstruction accuracy
array diff = abs(a - reconstructed);
float max_error = max(diff).item<float>();
CHECK(max_error < 1e-5f);
}
TEST_CASE("test metal svd orthogonality") {
// Test that U and V are orthogonal matrices
array a = random::normal({4, 4}, float32);
auto [u, s, vt] = linalg::svd(a, true);
// Check U^T @ U ≈ I
array utu = matmul(transpose(u), u);
array identity = eye(u.shape(0));
array u_diff = abs(utu - identity);
float u_max_error = max(u_diff).item<float>();
CHECK(u_max_error < 1e-4f);
// Check V^T @ V ≈ I
array v = transpose(vt);
array vtv = matmul(transpose(v), v);
array v_identity = eye(v.shape(0));
array v_diff = abs(vtv - v_identity);
float v_max_error = max(v_diff).item<float>();
CHECK(v_max_error < 1e-4f);
}
TEST_CASE("test metal svd special matrices") {
// Test identity matrix
{
array identity = eye(4);
auto [u, s, vt] = linalg::svd(identity, true);
// Singular values should all be 1
auto s_data = s.data<float>();
for (int i = 0; i < s.size(); i++) {
CHECK(abs(s_data[i] - 1.0f) < 1e-6f);
}
}
// Test zero matrix
{
array zeros = zeros({3, 3});
auto [u, s, vt] = linalg::svd(zeros, true);
// All singular values should be 0
auto s_data = s.data<float>();
for (int i = 0; i < s.size(); i++) {
CHECK(abs(s_data[i]) < 1e-6f);
}
}
// Test diagonal matrix
{
array diag_vals = array({3.0f, 2.0f, 1.0f}, {3});
array diagonal = diag(diag_vals);
auto [u, s, vt] = linalg::svd(diagonal, true);
// Singular values should match diagonal values (sorted)
auto s_data = s.data<float>();
CHECK(abs(s_data[0] - 3.0f) < 1e-6f);
CHECK(abs(s_data[1] - 2.0f) < 1e-6f);
CHECK(abs(s_data[2] - 1.0f) < 1e-6f);
}
}
TEST_CASE("test metal svd performance characteristics") {
// Test that larger matrices don't crash and complete in reasonable time
std::vector<int> sizes = {64, 128, 256};
for (int size : sizes) {
SUBCASE(("Performance test " + std::to_string(size) + "x" +
std::to_string(size))
.c_str()) {
array a = random::normal({size, size}, float32);
auto start = std::chrono::high_resolution_clock::now();
auto [u, s, vt] = linalg::svd(a, true);
auto end = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
// Check that computation completed
CHECK(u.shape() == std::vector<int>{size, size});
CHECK(s.shape() == std::vector<int>{size});
CHECK(vt.shape() == std::vector<int>{size, size});
// Log timing for manual inspection
MESSAGE(
"SVD of " << size << "x" << size << " matrix took "
<< duration.count() << "ms");
}
}
}