mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
![]() |
# Copyright © 2023-2024 Apple Inc.
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx.nn as nn
|
||
|
from time_utils import time_fn
|
||
|
|
||
|
|
||
|
def layer_norm(x, w, b, eps):
|
||
|
ot = x.dtype
|
||
|
x = x.astype(mx.float32)
|
||
|
mu = mx.mean(x, -1, keepdims=True)
|
||
|
v = mx.var(x, -1, keepdims=True)
|
||
|
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||
|
|
||
|
|
||
|
def time_layer_norm():
|
||
|
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||
|
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||
|
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||
|
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||
|
|
||
|
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||
|
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||
|
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||
|
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||
|
mx.eval(x, w, b, y)
|
||
|
|
||
|
def layer_norm_loop(g, x, w, b):
|
||
|
gx, gw, gb = x, w, b
|
||
|
for _ in range(32):
|
||
|
gx, gw, gb = g(gx, gw, gb, y)
|
||
|
return gx, gw, gb
|
||
|
|
||
|
time_fn(layer_norm_loop, g1, x, w, b)
|
||
|
time_fn(layer_norm_loop, g2, x, w, b)
|
||
|
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||
|
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
time_layer_norm()
|