mlx/docs/build/html/python/nn.html

858 lines
62 KiB
HTML
Raw Normal View History

2023-12-06 04:10:03 +08:00
2023-11-30 04:41:56 +08:00
<!DOCTYPE html>
2023-12-06 04:10:03 +08:00
<html lang="en" data-content_root="" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
2023-12-08 00:00:41 +08:00
<title>Neural Networks &#8212; MLX 0.0.4 documentation</title>
2023-12-06 04:10:03 +08:00
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css" />
<link rel="stylesheet" href="../_static/styles/sphinx-book-theme.css?digest=14f4ca6b54d191a8c7657f6c759bf11a5fb86285" type="text/css" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=5b4479735964841361fd" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd" />
<script src="../_static/vendor/fontawesome/6.1.2/js/all.min.js?digest=5b4479735964841361fd"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/scripts/sphinx-book-theme.js?digest=5a5c038af52cf7bc1a1ec88eea08e6366ee68824"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'python/nn';</script>
2023-11-30 04:41:56 +08:00
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="mlx.nn.value_and_grad" href="_autosummary/mlx.nn.value_and_grad.html" />
2023-12-06 04:10:03 +08:00
<link rel="prev" title="mlx.core.fft.irfftn" href="_autosummary/mlx.core.fft.irfftn.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<a class="skip-link" href="#main-content">Skip to main content</a>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>
Back to top
</button>
<input type="checkbox"
class="sidebar-toggle"
name="__primary"
id="__primary"/>
<label class="overlay overlay-primary" for="__primary"></label>
<input type="checkbox"
class="sidebar-toggle"
name="__secondary"
id="__secondary"/>
<label class="overlay overlay-secondary" for="__secondary"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search..."
aria-label="Search..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<nav class="bd-header navbar navbar-expand-lg bd-navbar">
</nav>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<a class="navbar-brand logo" href="../index.html">
2023-12-08 00:00:41 +08:00
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.0.4 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo.png" class="logo__image only-dark" alt="MLX 0.0.4 documentation - Home"/>`);</script>
2023-12-06 04:10:03 +08:00
</a></div>
<div class="sidebar-primary-item"><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
<div class="bd-toc-item navbar-nav active">
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Install</span></p>
<ul class="nav bd-sidenav">
2023-11-30 04:41:56 +08:00
<li class="toctree-l1"><a class="reference internal" href="../install.html">Build and Install</a></li>
</ul>
2023-12-06 04:10:03 +08:00
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Usage</span></p>
<ul class="nav bd-sidenav">
2023-11-30 04:41:56 +08:00
<li class="toctree-l1"><a class="reference internal" href="../quick_start.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../using_streams.html">Using Streams</a></li>
</ul>
2023-12-06 04:10:03 +08:00
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
2023-11-30 04:41:56 +08:00
<li class="toctree-l1"><a class="reference internal" href="../examples/linear_regression.html">Linear Regression</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mlp.html">Multi-Layer Perceptron</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/llama-inference.html">LLM inference</a></li>
</ul>
2023-12-06 04:10:03 +08:00
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Python API Reference</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="array.html">Array</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.html">mlx.core.array</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.astype.html">mlx.core.array.astype</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.item.html">mlx.core.array.item</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.tolist.html">mlx.core.array.tolist</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.dtype.html">mlx.core.array.dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.ndim.html">mlx.core.array.ndim</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.shape.html">mlx.core.array.shape</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.size.html">mlx.core.array.size</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.Dtype.html">mlx.core.Dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.abs.html">mlx.core.array.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.all.html">mlx.core.array.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.any.html">mlx.core.array.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.argmax.html">mlx.core.array.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.argmin.html">mlx.core.array.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.cos.html">mlx.core.array.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.dtype.html">mlx.core.array.dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.exp.html">mlx.core.array.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.log.html">mlx.core.array.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.log1p.html">mlx.core.array.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.logsumexp.html">mlx.core.array.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.max.html">mlx.core.array.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.mean.html">mlx.core.array.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.min.html">mlx.core.array.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.prod.html">mlx.core.array.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.reciprocal.html">mlx.core.array.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.reshape.html">mlx.core.array.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.rsqrt.html">mlx.core.array.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.sin.html">mlx.core.array.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.split.html">mlx.core.array.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.sqrt.html">mlx.core.array.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.square.html">mlx.core.array.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.sum.html">mlx.core.array.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.transpose.html">mlx.core.array.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.T.html">mlx.core.array.T</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array.var.html">mlx.core.array.var</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="devices_and_streams.html">Devices and Streams</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.Device.html">mlx.core.Device</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.default_device.html">mlx.core.default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.set_default_device.html">mlx.core.set_default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.Stream.html">mlx.core.Stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.default_stream.html">mlx.core.default_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.new_stream.html">mlx.core.new_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.set_default_stream.html">mlx.core.set_default_stream</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="ops.html">Operations</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-3"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.abs.html">mlx.core.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.add.html">mlx.core.add</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.all.html">mlx.core.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.allclose.html">mlx.core.allclose</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.any.html">mlx.core.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arange.html">mlx.core.arange</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arccos.html">mlx.core.arccos</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arccosh.html">mlx.core.arccosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arcsin.html">mlx.core.arcsin</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arcsinh.html">mlx.core.arcsinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arctan.html">mlx.core.arctan</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.arctanh.html">mlx.core.arctanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.argmax.html">mlx.core.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.argmin.html">mlx.core.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.argpartition.html">mlx.core.argpartition</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.argsort.html">mlx.core.argsort</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.array_equal.html">mlx.core.array_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.broadcast_to.html">mlx.core.broadcast_to</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.concatenate.html">mlx.core.concatenate</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.convolve.html">mlx.core.convolve</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.conv1d.html">mlx.core.conv1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.conv2d.html">mlx.core.conv2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.cos.html">mlx.core.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.cosh.html">mlx.core.cosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.divide.html">mlx.core.divide</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.equal.html">mlx.core.equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.erf.html">mlx.core.erf</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.erfinv.html">mlx.core.erfinv</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.exp.html">mlx.core.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.expand_dims.html">mlx.core.expand_dims</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.full.html">mlx.core.full</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.greater.html">mlx.core.greater</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.greater_equal.html">mlx.core.greater_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.less.html">mlx.core.less</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.less_equal.html">mlx.core.less_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.load.html">mlx.core.load</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.log.html">mlx.core.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.log2.html">mlx.core.log2</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.log10.html">mlx.core.log10</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.log1p.html">mlx.core.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.logaddexp.html">mlx.core.logaddexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.logical_not.html">mlx.core.logical_not</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.logsumexp.html">mlx.core.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.matmul.html">mlx.core.matmul</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.max.html">mlx.core.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.maximum.html">mlx.core.maximum</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.mean.html">mlx.core.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.min.html">mlx.core.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.minimum.html">mlx.core.minimum</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.multiply.html">mlx.core.multiply</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.negative.html">mlx.core.negative</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.ones.html">mlx.core.ones</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.ones_like.html">mlx.core.ones_like</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.partition.html">mlx.core.partition</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.pad.html">mlx.core.pad</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.prod.html">mlx.core.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.reciprocal.html">mlx.core.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.reshape.html">mlx.core.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.rsqrt.html">mlx.core.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.save.html">mlx.core.save</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.savez.html">mlx.core.savez</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.savez_compressed.html">mlx.core.savez_compressed</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sigmoid.html">mlx.core.sigmoid</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sign.html">mlx.core.sign</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sin.html">mlx.core.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sinh.html">mlx.core.sinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.softmax.html">mlx.core.softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sort.html">mlx.core.sort</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.split.html">mlx.core.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sqrt.html">mlx.core.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.square.html">mlx.core.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.squeeze.html">mlx.core.squeeze</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.stop_gradient.html">mlx.core.stop_gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.subtract.html">mlx.core.subtract</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.sum.html">mlx.core.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.take.html">mlx.core.take</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.take_along_axis.html">mlx.core.take_along_axis</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.tan.html">mlx.core.tan</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.tanh.html">mlx.core.tanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.transpose.html">mlx.core.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.var.html">mlx.core.var</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.where.html">mlx.core.where</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.zeros.html">mlx.core.zeros</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.zeros_like.html">mlx.core.zeros_like</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="random.html">Random</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-4"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.seed.html">mlx.core.random.seed</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.key.html">mlx.core.random.key</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.split.html">mlx.core.random.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.bernoulli.html">mlx.core.random.bernoulli</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.categorical.html">mlx.core.random.categorical</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.gumbel.html">mlx.core.random.gumbel</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.normal.html">mlx.core.random.normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.randint.html">mlx.core.random.randint</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.uniform.html">mlx.core.random.uniform</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.random.truncated_normal.html">mlx.core.random.truncated_normal</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="transforms.html">Transforms</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-5"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.eval.html">mlx.core.eval</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.grad.html">mlx.core.grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.value_and_grad.html">mlx.core.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.jvp.html">mlx.core.jvp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.vjp.html">mlx.core.vjp</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.vmap.html">mlx.core.vmap</a></li>
2023-11-30 04:41:56 +08:00
</ul>
2023-12-06 04:10:03 +08:00
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="fft.html">FFT</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-6"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.fft.html">mlx.core.fft.fft</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.ifft.html">mlx.core.fft.ifft</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.fft2.html">mlx.core.fft.fft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.ifft2.html">mlx.core.fft.ifft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.fftn.html">mlx.core.fft.fftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.ifftn.html">mlx.core.fft.ifftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.rfft.html">mlx.core.fft.rfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.irfft.html">mlx.core.fft.irfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.rfft2.html">mlx.core.fft.rfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.irfft2.html">mlx.core.fft.irfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.rfftn.html">mlx.core.fft.rfftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.core.fft.irfftn.html">mlx.core.fft.irfftn</a></li>
2023-11-30 04:41:56 +08:00
</ul>
</li>
2023-12-06 04:10:03 +08:00
<li class="toctree-l1 current active has-children"><a class="current reference internal" href="#">Neural Networks</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-7"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.value_and_grad.html">mlx.nn.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.Embedding.html">mlx.nn.Embedding</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.ReLU.html">mlx.nn.ReLU</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.GELU.html">mlx.nn.GELU</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.SiLU.html">mlx.nn.SiLU</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.Linear.html">mlx.nn.Linear</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.Conv1d.html">mlx.nn.Conv1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.Conv2d.html">mlx.nn.Conv2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.LayerNorm.html">mlx.nn.LayerNorm</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.RMSNorm.html">mlx.nn.RMSNorm</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.GroupNorm.html">mlx.nn.GroupNorm</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.RoPE.html">mlx.nn.RoPE</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.MultiHeadAttention.html">mlx.nn.MultiHeadAttention</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.nn.Sequential.html">mlx.nn.Sequential</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu.html">mlx.nn.gelu</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu_approx.html">mlx.nn.gelu_approx</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu_fast_approx.html">mlx.nn.gelu_fast_approx</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary_functions/mlx.nn.relu.html">mlx.nn.relu</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary_functions/mlx.nn.silu.html">mlx.nn.silu</a></li>
2023-11-30 04:41:56 +08:00
</ul>
</li>
2023-12-06 04:10:03 +08:00
<li class="toctree-l1 has-children"><a class="reference internal" href="optimizers.html">Optimizers</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-8"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.optimizers.OptimizerState.html">mlx.optimizers.OptimizerState</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.optimizers.Optimizer.html">mlx.optimizers.Optimizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.optimizers.SGD.html">mlx.optimizers.SGD</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.optimizers.Adam.html">mlx.optimizers.Adam</a></li>
2023-11-30 04:41:56 +08:00
</ul>
</li>
2023-12-06 04:10:03 +08:00
<li class="toctree-l1 has-children"><a class="reference internal" href="tree_utils.html">Tree Utils</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.utils.tree_flatten.html">mlx.utils.tree_flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.utils.tree_unflatten.html">mlx.utils.tree_unflatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="_autosummary/mlx.utils.tree_map.html">mlx.utils.tree_map</a></li>
2023-11-30 04:41:56 +08:00
</ul>
</li>
</ul>
2023-12-06 04:10:03 +08:00
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API Reference</span></p>
<ul class="nav bd-sidenav">
2023-11-30 04:41:56 +08:00
<li class="toctree-l1"><a class="reference internal" href="../cpp/ops.html">Operations</a></li>
2023-12-06 04:10:03 +08:00
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Further Reading</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../dev/extensions.html">Developer Documentation</a></li>
2023-11-30 04:41:56 +08:00
</ul>
2023-12-06 04:10:03 +08:00
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
2023-11-30 04:41:56 +08:00
</div>
2023-12-06 04:10:03 +08:00
<main id="main-content" class="bd-main">
<div class="sbt-scroll-pixel-helper"></div>
2023-11-30 04:41:56 +08:00
2023-12-06 04:10:03 +08:00
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item"><label class="sidebar-toggle primary-toggle btn btn-sm" for="__primary" title="Toggle primary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-bars"></span>
</label></div>
</div>
<div class="header-article-items__end">
<div class="header-article-item">
<div class="article-header-buttons">
<a href="https://github.com/ml-explore/mlx" target="_blank"
class="btn btn-sm btn-source-repository-button"
title="Source repository"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fab fa-github"></i>
</span>
</a>
<div class="dropdown dropdown-download-buttons">
<button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download this page">
<i class="fas fa-download"></i>
</button>
<ul class="dropdown-menu">
<li><a href="../_sources/python/nn.rst" target="_blank"
class="btn btn-sm btn-download-source-button dropdown-item"
title="Download source file"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file"></i>
</span>
<span class="btn__text-container">.rst</span>
</a>
</li>
<li>
<button onclick="window.print()"
class="btn btn-sm btn-download-pdf-button dropdown-item"
title="Print to PDF"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file-pdf"></i>
</span>
<span class="btn__text-container">.pdf</span>
</button>
</li>
2023-11-30 04:41:56 +08:00
</ul>
</div>
2023-12-06 04:10:03 +08:00
<button onclick="toggleFullScreen()"
class="btn btn-sm btn-fullscreen-button"
title="Fullscreen mode"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-expand"></i>
</span>
</button>
<script>
document.write(`
<button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
<span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
<span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
</button>
`);
</script>
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
<label class="sidebar-toggle secondary-toggle btn btn-sm" for="__secondary"title="Toggle secondary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-list"></span>
</label>
</div></div>
</div>
</div>
</div>
<div id="jb-print-docs-body" class="onlyprint">
<h1>Neural Networks</h1>
<!-- Table of contents -->
<div id="print-main-content">
<div id="jb-print-toc">
<div>
<h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#quick-start-with-neural-networks">Quick Start with Neural Networks</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#the-module-class">The Module Class</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#parameters">Parameters</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#updating-the-parameters">Updating the parameters</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#value-and-grad">Value and grad</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#neural-network-layers">Neural Network Layers</a><ul class="visible nav section-nav flex-column">
</ul>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article" role="main">
2023-11-30 04:41:56 +08:00
<section id="neural-networks">
2023-12-06 04:10:03 +08:00
<span id="nn"></span><h1>Neural Networks<a class="headerlink" href="#neural-networks" title="Permalink to this heading">#</a></h1>
2023-11-30 04:41:56 +08:00
<p>Writing arbitrarily complex neural networks in MLX can be done using only
<a class="reference internal" href="_autosummary/mlx.core.array.html#mlx.core.array" title="mlx.core.array"><code class="xref py py-class docutils literal notranslate"><span class="pre">mlx.core.array</span></code></a> and <a class="reference internal" href="_autosummary/mlx.core.value_and_grad.html#mlx.core.value_and_grad" title="mlx.core.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.core.value_and_grad()</span></code></a>. However, this requires the
user to write again and again the same simple neural network operations as well
as handle all the parameter state and initialization manually and explicitly.</p>
<p>The module <code class="xref py py-mod docutils literal notranslate"><span class="pre">mlx.nn</span></code> solves this problem by providing an intuitive way of
composing neural network layers, initializing their parameters, freezing them
for finetuning and more.</p>
<section id="quick-start-with-neural-networks">
2023-12-06 04:10:03 +08:00
<h2>Quick Start with Neural Networks<a class="headerlink" href="#quick-start-with-neural-networks" title="Permalink to this heading">#</a></h2>
2023-11-30 04:41:56 +08:00
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">mlx.core</span> <span class="k">as</span> <span class="nn">mx</span>
<span class="kn">import</span> <span class="nn">mlx.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="k">class</span> <span class="nc">MLP</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_dims</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">out_dims</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_dims</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="n">out_dims</span><span class="p">),</span>
<span class="p">]</span>
<span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">l</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">maximum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">i</span> <span class="o">&gt;</span> <span class="mi">0</span> <span class="k">else</span> <span class="n">x</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">l</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="c1"># The model is created with all its parameters but nothing is initialized</span>
<span class="c1"># yet because MLX is lazily evaluated</span>
<span class="n">mlp</span> <span class="o">=</span> <span class="n">MLP</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="c1"># We can access its parameters by calling mlp.parameters()</span>
<span class="n">params</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">parameters</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="n">params</span><span class="p">[</span><span class="s2">&quot;layers&quot;</span><span class="p">][</span><span class="mi">0</span><span class="p">][</span><span class="s2">&quot;weight&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="c1"># Printing a parameter will cause it to be evaluated and thus initialized</span>
<span class="nb">print</span><span class="p">(</span><span class="n">params</span><span class="p">[</span><span class="s2">&quot;layers&quot;</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="c1"># We can also force evaluate all parameters to initialize the model</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
<span class="c1"># A simple loss function.</span>
<span class="c1"># NOTE: It doesn&#39;t matter how it uses the mlp model. It currently captures</span>
<span class="c1"># it from the local scope. It could be a positional argument or a</span>
<span class="c1"># keyword argument.</span>
<span class="k">def</span> <span class="nf">l2_loss</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">y_hat</span> <span class="o">=</span> <span class="n">mlp</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="p">(</span><span class="n">y_hat</span> <span class="o">-</span> <span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">square</span><span class="p">()</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="c1"># Calling `nn.value_and_grad` instead of `mx.value_and_grad` returns the</span>
<span class="c1"># gradient with respect to `mlp.trainable_parameters()`</span>
<span class="n">loss_and_grad</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">value_and_grad</span><span class="p">(</span><span class="n">mlp</span><span class="p">,</span> <span class="n">l2_loss</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="the-module-class">
2023-12-06 04:10:03 +08:00
<span id="module-class"></span><h2>The Module Class<a class="headerlink" href="#the-module-class" title="Permalink to this heading">#</a></h2>
2023-11-30 04:41:56 +08:00
<p>The workhorse of any neural network library is the <a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> class. In
MLX the <a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> class is a container of <a class="reference internal" href="_autosummary/mlx.core.array.html#mlx.core.array" title="mlx.core.array"><code class="xref py py-class docutils literal notranslate"><span class="pre">mlx.core.array</span></code></a> or
<a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> instances. Its main function is to provide a way to
recursively <strong>access</strong> and <strong>update</strong> its parameters and those of its
submodules.</p>
<section id="parameters">
2023-12-06 04:10:03 +08:00
<h3>Parameters<a class="headerlink" href="#parameters" title="Permalink to this heading">#</a></h3>
2023-11-30 04:41:56 +08:00
<p>A parameter of a module is any public member of type <a class="reference internal" href="_autosummary/mlx.core.array.html#mlx.core.array" title="mlx.core.array"><code class="xref py py-class docutils literal notranslate"><span class="pre">mlx.core.array</span></code></a> (its
name should not start with <code class="docutils literal notranslate"><span class="pre">_</span></code>). It can be arbitrarily nested in other
<a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> instances or lists and dictionaries.</p>
<p><a class="reference internal" href="nn/module.html#mlx.nn.Module.parameters" title="mlx.nn.Module.parameters"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Module.parameters()</span></code></a> can be used to extract a nested dictionary with all
the parameters of a module and its submodules.</p>
<p>A <a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> can also keep track of “frozen” parameters.
<a class="reference internal" href="nn/module.html#mlx.nn.Module.trainable_parameters" title="mlx.nn.Module.trainable_parameters"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Module.trainable_parameters()</span></code></a> returns only the subset of
<a class="reference internal" href="nn/module.html#mlx.nn.Module.parameters" title="mlx.nn.Module.parameters"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Module.parameters()</span></code></a> that is not frozen. When using
<a class="reference internal" href="_autosummary/mlx.nn.value_and_grad.html#mlx.nn.value_and_grad" title="mlx.nn.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.nn.value_and_grad()</span></code></a> the gradients returned will be with respect to these
trainable parameters.</p>
</section>
<section id="updating-the-parameters">
2023-12-06 04:10:03 +08:00
<h3>Updating the parameters<a class="headerlink" href="#updating-the-parameters" title="Permalink to this heading">#</a></h3>
2023-11-30 04:41:56 +08:00
<p>MLX modules allow accessing and updating individual parameters. However, most
times we need to update large subsets of a modules parameters. This action is
performed by <a class="reference internal" href="nn/module.html#mlx.nn.Module.update" title="mlx.nn.Module.update"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Module.update()</span></code></a>.</p>
</section>
</section>
<section id="value-and-grad">
2023-12-06 04:10:03 +08:00
<h2>Value and grad<a class="headerlink" href="#value-and-grad" title="Permalink to this heading">#</a></h2>
2023-11-30 04:41:56 +08:00
<p>Using a <a class="reference internal" href="nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> does not preclude using MLXs high order function
transformations (<a class="reference internal" href="_autosummary/mlx.core.value_and_grad.html#mlx.core.value_and_grad" title="mlx.core.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.core.value_and_grad()</span></code></a>, <a class="reference internal" href="_autosummary/mlx.core.grad.html#mlx.core.grad" title="mlx.core.grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.core.grad()</span></code></a>, etc.). However,
these function transformations assume pure functions, namely the parameters
should be passed as an argument to the function being transformed.</p>
<p>There is an easy pattern to achieve that with MLX modules</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">other_inputs</span><span class="p">):</span>
<span class="n">model</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">params</span><span class="p">)</span> <span class="c1"># &lt;---- Necessary to make the model use the passed parameters</span>
<span class="k">return</span> <span class="n">model</span><span class="p">(</span><span class="n">other_inputs</span><span class="p">)</span>
<span class="n">f</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">trainable_parameters</span><span class="p">(),</span> <span class="n">mx</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">10</span><span class="p">,)))</span>
</pre></div>
</div>
<p>However, <a class="reference internal" href="_autosummary/mlx.nn.value_and_grad.html#mlx.nn.value_and_grad" title="mlx.nn.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.nn.value_and_grad()</span></code></a> provides precisely this pattern and only
computes the gradients with respect to the trainable parameters of the model.</p>
<p>In detail:</p>
<ul class="simple">
<li><p>it wraps the passed function with a function that calls <a class="reference internal" href="nn/module.html#mlx.nn.Module.update" title="mlx.nn.Module.update"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Module.update()</span></code></a>
to make sure the model is using the provided parameters.</p></li>
<li><p>it calls <a class="reference internal" href="_autosummary/mlx.core.value_and_grad.html#mlx.core.value_and_grad" title="mlx.core.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.core.value_and_grad()</span></code></a> to transform the function into a function
that also computes the gradients with respect to the passed parameters.</p></li>
<li><p>it wraps the returned function with a function that passes the trainable
parameters as the first argument to the function returned by
<a class="reference internal" href="_autosummary/mlx.core.value_and_grad.html#mlx.core.value_and_grad" title="mlx.core.value_and_grad"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mlx.core.value_and_grad()</span></code></a></p></li>
</ul>
2023-12-06 04:10:03 +08:00
<table class="autosummary longtable table autosummary">
2023-11-30 04:41:56 +08:00
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.value_and_grad.html#mlx.nn.value_and_grad" title="mlx.nn.value_and_grad"><code class="xref py py-obj docutils literal notranslate"><span class="pre">value_and_grad</span></code></a>(model, fn)</p></td>
<td><p>Transform the passed function <code class="docutils literal notranslate"><span class="pre">fn</span></code> to a function that computes the gradients of <code class="docutils literal notranslate"><span class="pre">fn</span></code> wrt the model's trainable parameters and also its value.</p></td>
</tr>
</tbody>
</table>
</section>
<section id="neural-network-layers">
2023-12-06 04:10:03 +08:00
<h2>Neural Network Layers<a class="headerlink" href="#neural-network-layers" title="Permalink to this heading">#</a></h2>
<table class="autosummary longtable table autosummary">
2023-11-30 04:41:56 +08:00
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.Embedding.html#mlx.nn.Embedding" title="mlx.nn.Embedding"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Embedding</span></code></a>(num_embeddings, dims)</p></td>
<td><p>Implements a simple lookup table that maps each input integer to a high-dimensional vector.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.ReLU.html#mlx.nn.ReLU" title="mlx.nn.ReLU"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ReLU</span></code></a>()</p></td>
<td><p>Applies the Rectified Linear Unit.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.GELU.html#mlx.nn.GELU" title="mlx.nn.GELU"><code class="xref py py-obj docutils literal notranslate"><span class="pre">GELU</span></code></a>([approx])</p></td>
<td><p>Applies the Gaussian Error Linear Units.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.SiLU.html#mlx.nn.SiLU" title="mlx.nn.SiLU"><code class="xref py py-obj docutils literal notranslate"><span class="pre">SiLU</span></code></a>()</p></td>
<td><p>Applies the Sigmoid Linear Unit.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.Linear.html#mlx.nn.Linear" title="mlx.nn.Linear"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Linear</span></code></a>(input_dims, output_dims[, bias])</p></td>
<td><p>Applies an affine transformation to the input.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.Conv1d.html#mlx.nn.Conv1d" title="mlx.nn.Conv1d"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Conv1d</span></code></a>(in_channels, out_channels, kernel_size)</p></td>
<td><p>Applies a 1-dimensional convolution over the multi-channel input sequence.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.Conv2d.html#mlx.nn.Conv2d" title="mlx.nn.Conv2d"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Conv2d</span></code></a>(in_channels, out_channels, kernel_size)</p></td>
<td><p>Applies a 2-dimensional convolution over the multi-channel input image.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.LayerNorm.html#mlx.nn.LayerNorm" title="mlx.nn.LayerNorm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">LayerNorm</span></code></a>(dims[, eps, affine])</p></td>
<td><p>Applies layer normalization [1] on the inputs.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.RMSNorm.html#mlx.nn.RMSNorm" title="mlx.nn.RMSNorm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RMSNorm</span></code></a>(dims[, eps])</p></td>
<td><p>Applies Root Mean Square normalization [1] to the inputs.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.GroupNorm.html#mlx.nn.GroupNorm" title="mlx.nn.GroupNorm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">GroupNorm</span></code></a>(num_groups, dims[, eps, affine, ...])</p></td>
<td><p>Applies Group Normalization [1] to the inputs.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.RoPE.html#mlx.nn.RoPE" title="mlx.nn.RoPE"><code class="xref py py-obj docutils literal notranslate"><span class="pre">RoPE</span></code></a>(dims[, traditional])</p></td>
<td><p>Implements the rotary positional encoding [1].</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary/mlx.nn.MultiHeadAttention.html#mlx.nn.MultiHeadAttention" title="mlx.nn.MultiHeadAttention"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MultiHeadAttention</span></code></a>(dims, num_heads[, ...])</p></td>
<td><p>Implements the scaled dot product attention with multiple heads.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary/mlx.nn.Sequential.html#mlx.nn.Sequential" title="mlx.nn.Sequential"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Sequential</span></code></a>(*modules)</p></td>
<td><p>A layer that calls the passed callables in order.</p></td>
</tr>
</tbody>
</table>
<p>Layers without parameters (e.g. activation functions) are also provided as
simple functions.</p>
2023-12-06 04:10:03 +08:00
<table class="autosummary longtable table autosummary">
2023-11-30 04:41:56 +08:00
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu.html#mlx.nn.gelu" title="mlx.nn.gelu"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gelu</span></code></a>(x)</p></td>
<td><p>Applies the Gaussian Error Linear Units function.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu_approx.html#mlx.nn.gelu_approx" title="mlx.nn.gelu_approx"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gelu_approx</span></code></a>(x)</p></td>
<td><p>An approximation to Gaussian Error Linear Unit.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary_functions/mlx.nn.gelu_fast_approx.html#mlx.nn.gelu_fast_approx" title="mlx.nn.gelu_fast_approx"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gelu_fast_approx</span></code></a>(x)</p></td>
<td><p>A fast approximation to Gaussian Error Linear Unit.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="_autosummary_functions/mlx.nn.relu.html#mlx.nn.relu" title="mlx.nn.relu"><code class="xref py py-obj docutils literal notranslate"><span class="pre">relu</span></code></a>(x)</p></td>
<td><p>Applies the Rectified Linear Unit.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="_autosummary_functions/mlx.nn.silu.html#mlx.nn.silu" title="mlx.nn.silu"><code class="xref py py-obj docutils literal notranslate"><span class="pre">silu</span></code></a>(x)</p></td>
<td><p>Applies the Sigmoid Linear Unit.</p></td>
</tr>
</tbody>
</table>
</section>
</section>
2023-12-06 04:10:03 +08:00
</article>
<footer class="prev-next-footer">
<div class="prev-next-area">
<a class="left-prev"
href="_autosummary/mlx.core.fft.irfftn.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">mlx.core.fft.irfftn</p>
</div>
</a>
<a class="right-next"
href="_autosummary/mlx.nn.value_and_grad.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">mlx.nn.value_and_grad</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> Contents
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#quick-start-with-neural-networks">Quick Start with Neural Networks</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#the-module-class">The Module Class</a><ul class="visible nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#parameters">Parameters</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#updating-the-parameters">Updating the parameters</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#value-and-grad">Value and grad</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#neural-network-layers">Neural Network Layers</a><ul class="visible nav section-nav flex-column">
</ul>
</li>
</ul>
</nav></div>
2023-11-30 04:41:56 +08:00
2023-12-06 04:10:03 +08:00
</div></div>
</div>
<footer class="bd-footer-content">
<div class="bd-footer-content__inner container">
<div class="footer-item">
<p class="component-author">
By MLX Contributors
</p>
2023-11-30 04:41:56 +08:00
</div>
2023-12-06 04:10:03 +08:00
<div class="footer-item">
2023-11-30 04:41:56 +08:00
2023-12-06 04:10:03 +08:00
<p class="copyright">
© Copyright 2023, MLX Contributors.
<br/>
</p>
2023-11-30 04:41:56 +08:00
</div>
2023-12-06 04:10:03 +08:00
<div class="footer-item">
</div>
<div class="footer-item">
</div>
</div>
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../_static/scripts/bootstrap.js?digest=5b4479735964841361fd"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd"></script>
2023-11-30 04:41:56 +08:00
2023-12-06 04:10:03 +08:00
<footer class="bd-footer">
</footer>
</body>
2023-11-30 04:41:56 +08:00
</html>