mlx/python/mlx/nn/losses.py

47 lines
1.6 KiB
Python
Raw Normal View History

2023-12-01 03:12:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 02:42:59 +08:00
import mlx.core as mx
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = 'none'):
"""
Computes the cross entropy loss between logits and targets.
2023-11-30 02:42:59 +08:00
Args:
logits (mx.array): The predicted logits.
targets (mx.array): The target values.
axis (int, optional): The axis over which to compute softmax. Defaults to -1.
reduction (str, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
'none': no reduction will be applied.
'mean': the sum of the output will be divided by the number of elements in the output.
'sum': the output will be summed.
Defaults to 'none'.
Returns:
mx.array: The computed cross entropy loss.
"""
2023-11-30 02:42:59 +08:00
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
loss = mx.logsumexp(logits, axis=axis) - score
if reduction == 'mean':
return mx.mean(loss)
elif reduction == 'sum':
return mx.sum(loss)
elif reduction == 'none':
return loss
else:
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
def l1_loss(predictions: mx.array, targets: mx.array):
"""
Computes the L1 loss between predictions and targets.
Args:
predictions (mx.array): The predicted values.
targets (mx.array): The target values.
Returns:
mx.array: The computed L1 loss.
"""
return mx.mean(mx.abs(predictions - targets))