mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
95 lines
4.1 KiB
Python
95 lines
4.1 KiB
Python
![]() |
# Copyright © 2023 Apple Inc.
|
||
|
|
||
|
import itertools
|
||
|
import math
|
||
|
import unittest
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx_tests
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class TestLinalg(mlx_tests.MLXTestCase):
|
||
|
def test_norm(self):
|
||
|
vector_ords = [None, 0.5, 0, 1, 2, 3, -1, float("inf"), -float("inf")]
|
||
|
matrix_ords = [None, "fro", -1, 1, float("inf"), -float("inf")]
|
||
|
|
||
|
for shape in [(3,), (2, 3), (2, 3, 3)]:
|
||
|
x_mx = mx.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
x_np = np.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
# Test when at least one axis is provided
|
||
|
for num_axes in range(1, len(shape)):
|
||
|
if num_axes == 1:
|
||
|
ords = vector_ords
|
||
|
else:
|
||
|
ords = matrix_ords
|
||
|
for axis in itertools.combinations(range(len(shape)), num_axes):
|
||
|
for keepdims in [True, False]:
|
||
|
for o in ords:
|
||
|
out_np = np.linalg.norm(
|
||
|
x_np, ord=o, axis=axis, keepdims=keepdims
|
||
|
)
|
||
|
out_mx = mx.linalg.norm(
|
||
|
x_mx, ord=o, axis=axis, keepdims=keepdims
|
||
|
)
|
||
|
with self.subTest(
|
||
|
shape=shape, ord=o, axis=axis, keepdims=keepdims
|
||
|
):
|
||
|
self.assertTrue(
|
||
|
np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
|
||
|
)
|
||
|
|
||
|
# Test only ord provided
|
||
|
for shape in [(3,), (2, 3)]:
|
||
|
x_mx = mx.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
x_np = np.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
for o in [None, 1, -1, float("inf"), -float("inf")]:
|
||
|
for keepdims in [True, False]:
|
||
|
out_np = np.linalg.norm(x_np, ord=o, keepdims=keepdims)
|
||
|
out_mx = mx.linalg.norm(x_mx, ord=o, keepdims=keepdims)
|
||
|
with self.subTest(shape=shape, ord=o, keepdims=keepdims):
|
||
|
self.assertTrue(
|
||
|
np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
|
||
|
)
|
||
|
|
||
|
# Test no ord and no axis provided
|
||
|
for shape in [(3,), (2, 3), (2, 3, 3)]:
|
||
|
x_mx = mx.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
x_np = np.arange(1, math.prod(shape) + 1).reshape(shape)
|
||
|
for keepdims in [True, False]:
|
||
|
out_np = np.linalg.norm(x_np, keepdims=keepdims)
|
||
|
out_mx = mx.linalg.norm(x_mx, keepdims=keepdims)
|
||
|
with self.subTest(shape=shape, keepdims=keepdims):
|
||
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
||
|
|
||
|
def test_complex_norm(self):
|
||
|
for shape in [(3,), (2, 3), (2, 3, 3)]:
|
||
|
x_np = np.random.uniform(size=shape).astype(
|
||
|
np.float32
|
||
|
) + 1j * np.random.uniform(size=shape).astype(np.float32)
|
||
|
x_mx = mx.array(x_np)
|
||
|
out_np = np.linalg.norm(x_np)
|
||
|
out_mx = mx.linalg.norm(x_mx)
|
||
|
with self.subTest(shape=shape):
|
||
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
||
|
for num_axes in range(1, len(shape)):
|
||
|
for axis in itertools.combinations(range(len(shape)), num_axes):
|
||
|
out_np = np.linalg.norm(x_np, axis=axis)
|
||
|
out_mx = mx.linalg.norm(x_mx, axis=axis)
|
||
|
with self.subTest(shape=shape, axis=axis):
|
||
|
self.assertTrue(
|
||
|
np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
|
||
|
)
|
||
|
|
||
|
x_np = np.random.uniform(size=(4, 4)).astype(
|
||
|
np.float32
|
||
|
) + 1j * np.random.uniform(size=(4, 4)).astype(np.float32)
|
||
|
x_mx = mx.array(x_np)
|
||
|
out_np = np.linalg.norm(x_np, ord="fro")
|
||
|
out_mx = mx.linalg.norm(x_mx, ord="fro")
|
||
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|