mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
44 lines
853 B
Python
44 lines
853 B
Python
![]() |
import mlx.core as mx
|
||
|
import time
|
||
|
|
||
|
num_features = 100
|
||
|
num_examples = 1_000
|
||
|
num_iters = 10_000
|
||
|
lr = 0.01
|
||
|
|
||
|
# True parameters
|
||
|
w_star = mx.random.normal((num_features,))
|
||
|
|
||
|
# Input examples (design matrix)
|
||
|
X = mx.random.normal((num_examples, num_features))
|
||
|
|
||
|
# Noisy labels
|
||
|
eps = 1e-2 * mx.random.normal((num_examples,))
|
||
|
y = X @ w_star + eps
|
||
|
|
||
|
# Initialize random parameters
|
||
|
w = 1e-2 * mx.random.normal((num_features,))
|
||
|
|
||
|
|
||
|
def loss_fn(w):
|
||
|
return 0.5 * mx.mean(mx.square(X @ w - y))
|
||
|
|
||
|
|
||
|
grad_fn = mx.grad(loss_fn)
|
||
|
|
||
|
tic = time.time()
|
||
|
for _ in range(num_iters):
|
||
|
grad = grad_fn(w)
|
||
|
w = w - lr * grad
|
||
|
mx.eval(w)
|
||
|
toc = time.time()
|
||
|
|
||
|
loss = loss_fn(w)
|
||
|
error_norm = mx.sum(mx.square(w - w_star)).item() ** 0.5
|
||
|
throughput = num_iters / (toc - tic)
|
||
|
|
||
|
print(
|
||
|
f"Loss {loss.item():.5f}, |w-w*| = {error_norm:.5f}, "
|
||
|
f"Throughput {throughput:.5f} (it/s)"
|
||
|
)
|