mlx/mlx/backend/common/inverse.cpp

141 lines
3.7 KiB
C++
Raw Normal View History

2024-03-15 21:34:36 +08:00
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
// Wrapper to account for differences in
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
int info;
#ifdef LAPACK_FORTRAN_STRLEN_END
strtri_(
/* uplo = */ &uplo,
/* diag = */ &diag,
/* N = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info,
/* uplo_len = */ static_cast<size_t>(1),
/* diag_len = */ static_cast<size_t>(1));
#else
strtri_(
/* uplo = */ &uplo,
/* diag = */ &diag,
/* N = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
#endif
return info;
}
2024-03-15 21:34:36 +08:00
namespace mlx::core {
void general_inv(array& inv, int N, int i) {
int info;
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
// Compute LU factorization.
sgetrf_(
/* m = */ &N,
/* n = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU factorization failed with error code " << info;
throw std::runtime_error(ss.str());
}
static const int lwork_query = -1;
float workspace_size = 0;
// Compute workspace size.
sgetri_(
/* m = */ &N,
/* a = */ nullptr,
/* lda = */ &N,
/* ipiv = */ nullptr,
/* work = */ &workspace_size,
/* lwork = */ &lwork_query,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU workspace calculation failed with error code "
<< info;
throw std::runtime_error(ss.str());
}
const int lwork = workspace_size;
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
// Compute inverse.
sgetri_(
/* m = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: inversion failed with error code " << info;
throw std::runtime_error(ss.str());
}
}
void tri_inv(array& inv, int N, int i, bool upper) {
const char uplo = upper ? 'L' : 'U';
const char diag = 'N';
int info = strtri_wrapper(uplo, diag, inv.data<float>() + N * N * i, N);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: triangular inversion failed with error code " << info;
throw std::runtime_error(ss.str());
}
}
void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
2024-03-15 21:34:36 +08:00
// Lapack uses the column-major convention. We take advantage of the following
// identity to avoid transposing (see
// https://math.stackexchange.com/a/340234):
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy(a, inv, a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
const int N = a.shape(-1);
const size_t num_matrices = a.size() / (N * N);
for (int i = 0; i < num_matrices; i++) {
if (tri) {
tri_inv(inv, N, i, upper);
} else {
general_inv(inv, N, i);
2024-03-15 21:34:36 +08:00
}
}
}
void Inverse::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Inverse::eval] only supports float32.");
}
inverse_impl(inputs[0], output, tri_, upper_);
2024-03-15 21:34:36 +08:00
}
} // namespace mlx::core