2023-12-01 03:12:53 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
2023-11-30 02:30:41 +08:00
|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
|
|
|
from subprocess import run
|
|
|
|
|
|
|
|
BENCH_MLX = Path(__file__).parent / "bench_mlx.py"
|
|
|
|
BENCH_TORCH = Path(__file__).parent / "bench_torch.py"
|
|
|
|
|
|
|
|
|
|
|
|
def run_or_raise(*args, **kwargs):
|
|
|
|
try:
|
|
|
|
result = run(*args, capture_output=True, **kwargs)
|
|
|
|
return float(result.stdout)
|
|
|
|
except ValueError:
|
2024-06-04 22:50:46 +08:00
|
|
|
raise ValueError(
|
|
|
|
f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}"
|
|
|
|
)
|
2023-11-30 02:30:41 +08:00
|
|
|
|
|
|
|
|
|
|
|
def compare(args):
|
|
|
|
t_mlx = run_or_raise(["python", BENCH_MLX] + args)
|
|
|
|
t_torch = run_or_raise(["python", BENCH_TORCH] + args)
|
|
|
|
|
|
|
|
print((t_torch - t_mlx) / t_torch, " ".join(args), sep="\t")
|
|
|
|
|
|
|
|
|
|
|
|
def compare_mlx_dtypes(args, dt1, dt2):
|
|
|
|
t_mlx_dt1 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt1])
|
|
|
|
t_mlx_dt2 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt2])
|
|
|
|
|
|
|
|
print((t_mlx_dt2 - t_mlx_dt1) / t_mlx_dt2, " ".join(args), sep="\t")
|
|
|
|
|
|
|
|
|
|
|
|
def make_regex_search(regexes):
|
|
|
|
compiled_regexes = list(map(re.compile, regexes))
|
|
|
|
|
|
|
|
def search(x):
|
|
|
|
return (c.search(x) is not None for c in compiled_regexes)
|
|
|
|
|
|
|
|
return search
|
|
|
|
|
|
|
|
|
|
|
|
def make_predicate(positive_filter, negative_filter):
|
|
|
|
if positive_filter is not None:
|
|
|
|
positive_filter_search = make_regex_search(positive_filter)
|
|
|
|
positive_filter = lambda x: all(positive_filter_search(x))
|
|
|
|
else:
|
|
|
|
positive_filter = lambda x: True
|
|
|
|
|
|
|
|
if negative_filter is not None:
|
|
|
|
negative_filter_search = make_regex_search(negative_filter)
|
|
|
|
negative_filter = lambda x: not any(negative_filter_search(x))
|
|
|
|
else:
|
|
|
|
negative_filter = lambda x: True
|
|
|
|
|
|
|
|
def predicate(x):
|
|
|
|
return positive_filter(x) and negative_filter(x)
|
|
|
|
|
|
|
|
return predicate
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-01-02 13:08:17 +08:00
|
|
|
parser = argparse.ArgumentParser(description="Run comparisons against PyTorch")
|
2023-11-30 02:30:41 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--filter", "-f", help="Regex filter to select benchmarks", nargs="+"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--negative_filter", "-n", help="Regex filter to remove benchmarks", nargs="+"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--mlx_dtypes",
|
|
|
|
"-d",
|
|
|
|
help="Compare mlx benchmarks between the 2 provided data types",
|
|
|
|
nargs=2,
|
|
|
|
)
|
|
|
|
args, rest = parser.parse_known_args()
|
|
|
|
|
|
|
|
_filter = make_predicate(args.filter, args.negative_filter)
|
|
|
|
|
|
|
|
if args.mlx_dtypes:
|
2024-02-11 22:08:20 +08:00
|
|
|
compare_filtered = lambda x: (
|
|
|
|
compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
|
2023-11-30 02:30:41 +08:00
|
|
|
if _filter(x)
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
compare_filtered = lambda x: compare(x.split() + rest) if _filter(x) else None
|
|
|
|
|
|
|
|
# Binary ops
|
|
|
|
compare_filtered("add --size 10x1024x128 --size 1x1024x128 --cpu")
|
|
|
|
compare_filtered("add --size 10x1024x128 --size 1x1024x128")
|
|
|
|
compare_filtered("add --size 1024x128 --size 1x128 --cpu")
|
|
|
|
compare_filtered("add --size 1024x128 --size 1x128")
|
|
|
|
compare_filtered("add --size 1024x4096 --size 1x4096 --cpu")
|
|
|
|
compare_filtered("add --size 1024x4096 --size 1x4096")
|
|
|
|
compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0 --cpu")
|
|
|
|
compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0")
|
|
|
|
compare_filtered("add --size 1024x1024 --size 1024x1024 --cpu")
|
|
|
|
compare_filtered("add --size 1024x1024 --size 1024x1024")
|
|
|
|
compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0 --cpu")
|
|
|
|
compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0")
|
|
|
|
compare_filtered(
|
|
|
|
"add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Reduction ops
|
|
|
|
compare_filtered("sum_all --size 10x1024x128 --cpu")
|
|
|
|
compare_filtered("sum_all --size 10x1024x128")
|
|
|
|
compare_filtered("sum_axis --size 16x1024x128 --axis 2 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x1024x128 --axis 2")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 2 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 2")
|
|
|
|
compare_filtered("sum_axis --size 1024x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 1024x1024 --axis 1")
|
|
|
|
compare_filtered("sum_axis --size 1024x1024 --axis 0 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 1024x1024 --axis 0")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 1")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0")
|
2023-12-25 06:47:57 +08:00
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1 --cpu")
|
|
|
|
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1")
|
2023-11-30 02:30:41 +08:00
|
|
|
compare_filtered("argmax --size 10x1024x128 --axis 1 --cpu")
|
|
|
|
compare_filtered("argmax --size 10x1024x128 --axis 1")
|
|
|
|
compare_filtered("argmax --size 10x1024x128 --axis 2 --cpu")
|
|
|
|
compare_filtered("argmax --size 10x1024x128 --axis 2")
|
|
|
|
compare_filtered("argmax --size 1024x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("argmax --size 1024x1024 --axis 1")
|
|
|
|
|
|
|
|
# Matmul ops
|
|
|
|
compare_filtered("matmul_square --size 1024x1024")
|
|
|
|
compare_filtered("matmul_square --size 1024x1024 --cpu")
|
|
|
|
compare_filtered("matmul_square --size 16x1024x1024")
|
|
|
|
compare_filtered("matmul_square --size 16x1024x1024 --cpu")
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered("matmul --size 512x8192 --size 8192x512")
|
|
|
|
compare_filtered("matmul --size 512x8192 --size 8192x512 --cpu")
|
|
|
|
# compare_filtered("matmul --size 512x131072 --size 131072x512")
|
|
|
|
# compare_filtered("matmul --size 512x131072 --size 131072x512 --cpu")
|
|
|
|
compare_filtered("matmul --size 8192x512 --size 512x8192")
|
|
|
|
compare_filtered("matmul --size 8192x512 --size 512x8192 --cpu")
|
|
|
|
# compare_filtered("matmul --size 131072x512 --size 512x512")
|
|
|
|
# compare_filtered("matmul --size 131072x512 --size 512x512 --cpu")
|
|
|
|
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024")
|
|
|
|
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --cpu")
|
|
|
|
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --fused")
|
|
|
|
compare_filtered(
|
|
|
|
"linear --size 1024x1024 --size 1024 --size 128x1024 --fused --cpu"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Matvec ops
|
|
|
|
compare_filtered("matmul --size 1x1x4096 --size 4096x4096 --cpu")
|
|
|
|
compare_filtered("matmul --size 1x1x4096 --size 4096x4096")
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0"
|
|
|
|
)
|
|
|
|
compare_filtered("matmul --size 32x1x1000 --size 32x1000x128 --cpu")
|
|
|
|
compare_filtered("matmul --size 32x1x1000 --size 32x1000x128")
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered(
|
|
|
|
"matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Various ops
|
|
|
|
compare_filtered("softmax --size 32x16x1024 --axis 2")
|
|
|
|
compare_filtered("softmax --size 32x16x1024 --axis 2 --cpu")
|
|
|
|
compare_filtered("softmax --size 32x16x1024 --axis 2 --fused")
|
|
|
|
compare_filtered("softmax --size 32x16x1024 --axis 2 --fused --cpu")
|
|
|
|
compare_filtered("softmax --size 2x1024x1024 --axis 1")
|
|
|
|
compare_filtered("softmax --size 2x1024x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused")
|
|
|
|
compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused --cpu")
|
|
|
|
compare_filtered("relu --size 32x16x1024")
|
|
|
|
compare_filtered("relu --size 32x16x1024 --cpu")
|
2023-12-11 08:31:38 +08:00
|
|
|
compare_filtered("leaky_relu --size 32x16x1024")
|
|
|
|
compare_filtered("leaky_relu --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("elu --size 32x16x1024")
|
|
|
|
compare_filtered("elu --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("relu6 --size 32x16x1024")
|
|
|
|
compare_filtered("relu6 --size 32x16x1024 --cpu")
|
2025-06-15 17:34:10 +08:00
|
|
|
compare_filtered("relu_squared --size 32x16x1024")
|
|
|
|
compare_filtered("relu_squared --size 32x16x1024 --cpu")
|
2023-12-11 08:31:38 +08:00
|
|
|
compare_filtered("softplus --size 32x16x1024")
|
|
|
|
compare_filtered("softplus --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("celu --size 32x16x1024")
|
|
|
|
compare_filtered("celu --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("log_sigmoid --size 32x16x1024")
|
|
|
|
compare_filtered("log_sigmoid --size 32x16x1024 --cpu")
|
2023-12-12 09:04:07 +08:00
|
|
|
compare_filtered("step --size 32x16x1024")
|
|
|
|
compare_filtered("step --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("selu --size 32x16x1024")
|
|
|
|
compare_filtered("selu --size 32x16x1024 --cpu")
|
2023-12-12 11:40:57 +08:00
|
|
|
# compare_filtered("mish --size 32x16x1024") NOTE: Torch does not implement Mish in MPS atm
|
|
|
|
compare_filtered("mish --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("prelu --size 32x16x1024")
|
|
|
|
compare_filtered("prelu --size 32x16x1024 --cpu")
|
|
|
|
|
2023-11-30 02:30:41 +08:00
|
|
|
compare_filtered("scalar_mul --size 32x16x1024")
|
|
|
|
compare_filtered("scalar_mul --size 32x16x1024 --cpu")
|
|
|
|
compare_filtered("cross_entropy --size 256x1024")
|
|
|
|
compare_filtered("cross_entropy --size 256x1024 --cpu")
|
|
|
|
compare_filtered("logsumexp --size 1024x1024 --axis 1")
|
|
|
|
compare_filtered("logsumexp --size 1024x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("logsumexp --size 1024x1024 --axis 0")
|
|
|
|
compare_filtered("logsumexp --size 1024x1024 --axis 0 --cpu")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2 --cpu")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1 --cpu")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0 --cpu")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1 --cpu")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1")
|
|
|
|
compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1 --cpu")
|
|
|
|
compare_filtered("concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2")
|
|
|
|
compare_filtered(
|
|
|
|
"concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2 --cpu"
|
|
|
|
)
|
|
|
|
compare_filtered("conv1d --size 1x1000x80 --size 128x11x80")
|
|
|
|
compare_filtered("conv1d --size 1x1000x80 --size 128x11x80 --cpu")
|
|
|
|
compare_filtered("conv1d --size 16x1000x80 --size 128x11x80")
|
|
|
|
compare_filtered("conv1d --size 4x1000x80 --size 128x11x80 --cpu")
|
|
|
|
compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3")
|
|
|
|
compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3 --cpu")
|
|
|
|
compare_filtered("conv2d --size 16x256x256x3 --size 8x3x3x3")
|
|
|
|
compare_filtered("conv2d --size 4x256x256x3 --size 8x3x3x3 --cpu")
|
|
|
|
compare_filtered("cumsum --size 1024x1024 --axis 1 --cpu")
|
|
|
|
compare_filtered("cumsum --size 1024x1024 --axis 0 --cpu")
|
|
|
|
compare_filtered("cumsum --size 1024x1024 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 1024x1024 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 128x1024 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 128x1024 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 1024x4096 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 1024x4096 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 128x4096 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 128x4096 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 1024x7777 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 1024x7777 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 128x7777 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 128x7777 --axis 0")
|
|
|
|
compare_filtered("cumsum --size 32768x128 --axis 1")
|
|
|
|
compare_filtered("cumsum --size 32768x128 --axis 0")
|
|
|
|
|
|
|
|
compare_filtered("sort --size 1024x1024 --axis 0")
|
|
|
|
compare_filtered("sort --size 1024x1024 --axis 1")
|
|
|
|
compare_filtered("sort --size 32768x128 --axis 0")
|
|
|
|
compare_filtered("sort --size 32768x128 --axis 1")
|
|
|
|
compare_filtered("sort --size 128x128 --axis 0 --cpu")
|
|
|
|
compare_filtered("sort --size 128x128 --axis 1 --cpu")
|
|
|
|
|
|
|
|
compare_filtered("topk --size 1024x1024 --axis 0")
|
|
|
|
compare_filtered("topk --size 1024x1024 --axis 1")
|
|
|
|
compare_filtered("topk --size 32768x128 --axis 0")
|
|
|
|
compare_filtered("topk --size 32768x128 --axis 1")
|
|
|
|
compare_filtered("topk --size 128x128 --axis 0 --cpu")
|
|
|
|
compare_filtered("topk --size 128x128 --axis 1 --cpu")
|