mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-22 13:07:51 +08:00
89 lines
3.0 KiB
C++
89 lines
3.0 KiB
C++
![]() |
|
||
|
// Copyright © 2023 Apple Inc.
|
||
|
|
||
|
#include <numeric>
|
||
|
#include <ostream>
|
||
|
#include <variant>
|
||
|
|
||
|
#include <pybind11/iostream.h>
|
||
|
#include <pybind11/pybind11.h>
|
||
|
#include <pybind11/stl.h>
|
||
|
|
||
|
#include "mlx/linalg.h"
|
||
|
#include "mlx/ops.h"
|
||
|
#include "mlx/utils.h"
|
||
|
|
||
|
#include "python/src/load.h"
|
||
|
#include "python/src/utils.h"
|
||
|
|
||
|
namespace py = pybind11;
|
||
|
using namespace py::literals;
|
||
|
|
||
|
using namespace mlx::core;
|
||
|
using namespace mlx::core::linalg;
|
||
|
|
||
|
void init_linalg(py::module_& parent_module) {
|
||
|
auto m =
|
||
|
parent_module.def_submodule("linalg", "mlx.core.linalg: Linear Algebra.");
|
||
|
|
||
|
m.def(
|
||
|
"vector_norm",
|
||
|
[](const array& a,
|
||
|
const std::variant<double, std::string>& ord,
|
||
|
const std::variant<std::monostate, int, std::vector<int>>& axis,
|
||
|
bool keepdims,
|
||
|
StreamOrDevice s) {
|
||
|
std::vector<int> axes = std::visit(
|
||
|
overloaded{
|
||
|
[](std::monostate s) { return std::vector<int>(); },
|
||
|
[](int axis) { return std::vector<int>({axis}); },
|
||
|
[](const std::vector<int> axes) { return axes; }},
|
||
|
axis);
|
||
|
|
||
|
if (axes.empty())
|
||
|
return vector_norm(a, ord, keepdims, s);
|
||
|
else
|
||
|
return vector_norm(a, ord, axes, keepdims, s);
|
||
|
},
|
||
|
"a"_a,
|
||
|
"ord"_a = 2.0,
|
||
|
"axis"_a = none,
|
||
|
"keepdims"_a = false,
|
||
|
"stream"_a = none,
|
||
|
R"pbdoc(
|
||
|
Computes a vector norm.
|
||
|
|
||
|
- If :attr:`axis`\ `= None`, :attr:`a` will be flattened before the norm is computed.
|
||
|
- If :attr:`axis` is an `int` or a `tuple`, the norm will be computed over these dimensions
|
||
|
and the other dimensions will be treated as batch dimensions.
|
||
|
|
||
|
|
||
|
:attr:`ord` defines the vector norm that is computed. The following norms are supported:
|
||
|
|
||
|
====================== ===============================
|
||
|
:attr:`ord` vector norm
|
||
|
====================== ===============================
|
||
|
`2` (default) `2`-norm (see below)
|
||
|
`inf` `max(abs(x))`
|
||
|
`-inf` `min(abs(x))`
|
||
|
`0` `sum(x != 0)`
|
||
|
other `int` or `float` `sum(abs(x)^{ord})^{(1 / ord)}`
|
||
|
====================== ===============================
|
||
|
|
||
|
where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.
|
||
|
|
||
|
Args:
|
||
|
a (Tensor): tensor, flattened by default, but this behavior can be
|
||
|
controlled using :attr:`dim`.
|
||
|
ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `2`
|
||
|
axis (int, Tuple[int], optional): dimensions over which to compute
|
||
|
the norm. See above for the behavior when :attr:`dim`\ `= None`.
|
||
|
Default: `None`
|
||
|
keepdims (bool, optional): If set to `True`, the reduced dimensions are retained
|
||
|
in the result as dimensions with size one. Default: `False`
|
||
|
|
||
|
Returns:
|
||
|
A real-valued tensor, even when :attr:`a` is complex.
|
||
|
)pbdoc");
|
||
|
}
|