mlx/docs/src/python/random.rst

46 lines
1015 B
ReStructuredText
Raw Normal View History

2023-11-30 02:30:41 +08:00
.. _random:
Random
======
Random sampling functions in MLX use an implicit global PRNG state by default.
However, all function take an optional ``key`` keyword argument for when more
fine-grained control or explicit state management is needed.
For example, you can generate random numbers with:
.. code-block:: python
for _ in range(3):
print(mx.random.uniform())
which will print a sequence of unique pseudo random numbers. Alternatively you
can explicitly set the key:
.. code-block:: python
key = mx.random.key(0)
for _ in range(3):
print(mx.random.uniform(key=key))
which will yield the same pseudo random number at each iteration.
Following `JAX's PRNG design <https://jax.readthedocs.io/en/latest/jep/263-prng.html>`_
we use a splittable version of Threefry, which is a counter-based PRNG.
.. currentmodule:: mlx.core.random
.. autosummary::
:toctree: _autosummary
bernoulli
categorical
gumbel
key
2023-11-30 02:30:41 +08:00
normal
randint
seed
split
2023-11-30 02:30:41 +08:00
truncated_normal
uniform