mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
85 lines
2.3 KiB
Python
85 lines
2.3 KiB
Python
![]() |
# Copyright © 2025 Apple Inc.
|
||
|
|
||
|
import mlx.core as mx
|
||
|
from time_utils import time_fn
|
||
|
|
||
|
N = 1024
|
||
|
D = 1024
|
||
|
M = 1024
|
||
|
E = 32
|
||
|
I = 4
|
||
|
|
||
|
|
||
|
def gather_sort(x, indices):
|
||
|
N, M = indices.shape
|
||
|
indices = indices.flatten()
|
||
|
order = mx.argsort(indices)
|
||
|
inv_order = mx.argsort(order)
|
||
|
return x.flatten(0, -3)[order // M], indices[order], inv_order
|
||
|
|
||
|
|
||
|
def scatter_unsort(x, inv_order, shape=None):
|
||
|
x = x[inv_order]
|
||
|
if shape is not None:
|
||
|
x = mx.unflatten(x, 0, shape)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def gather_mm_simulate(x, w, indices):
|
||
|
x, idx, inv_order = gather_sort(x, indices)
|
||
|
for i in range(2):
|
||
|
y = mx.concatenate(
|
||
|
[
|
||
|
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
|
||
|
for i, j in enumerate(idx.tolist())
|
||
|
],
|
||
|
axis=0,
|
||
|
)
|
||
|
x = y[:, None]
|
||
|
x = scatter_unsort(x, inv_order, indices.shape)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def time_gather_qmm():
|
||
|
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
|
||
|
w1 = mx.random.normal((E, M, D)) / 1024**0.5
|
||
|
w2 = mx.random.normal((E, D, M)) / 1024**0.5
|
||
|
w1 = mx.quantize(w1)
|
||
|
w2 = mx.quantize(w2)
|
||
|
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
|
||
|
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
|
||
|
mx.eval(x, w1, w2, indices, sorted_indices)
|
||
|
|
||
|
def gather_mm(x, w1, w2, indices, sort):
|
||
|
idx = indices
|
||
|
inv_order = None
|
||
|
if sort:
|
||
|
x, idx, inv_order = gather_sort(x, indices)
|
||
|
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
||
|
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
||
|
if sort:
|
||
|
x = scatter_unsort(x, inv_order, indices.shape)
|
||
|
return x
|
||
|
|
||
|
time_fn(gather_mm, x, w1, w2, indices, False)
|
||
|
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
|
||
|
time_fn(gather_mm, x, w1, w2, indices, True)
|
||
|
|
||
|
x = mx.random.normal((N * I, D)) / 1024**0.5
|
||
|
w1 = mx.random.normal((M, D)) / 1024**0.5
|
||
|
w2 = mx.random.normal((D, M)) / 1024**0.5
|
||
|
w1 = mx.quantize(w1)
|
||
|
w2 = mx.quantize(w2)
|
||
|
mx.eval(x, w1, w2)
|
||
|
|
||
|
def equivalent_matmul(x, w1, w2):
|
||
|
x = mx.quantized_matmul(x, *w1, transpose=True)
|
||
|
x = mx.quantized_matmul(x, *w2, transpose=True)
|
||
|
return x
|
||
|
|
||
|
time_fn(equivalent_matmul, x, w1, w2)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
time_gather_qmm()
|