mlx/tests/metal_tests.cpp

514 lines
14 KiB
C++
Raw Normal View History

2023-12-01 03:12:53 +08:00
// Copyright © 2023 Apple Inc.
2023-11-30 02:30:41 +08:00
#include <array>
#include "doctest/doctest.h"
2024-01-19 02:01:59 +08:00
#include "mlx/backend/metal/allocator.h"
2023-11-30 02:30:41 +08:00
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/mlx.h"
using namespace mlx::core;
static const std::array<Dtype, 5> types =
{bool_, uint32, int32, int64, float32};
TEST_CASE("test metal device") {
// Make sure the device and library can load
CHECK(metal::is_available());
auto& device = metal::device(Device::gpu);
}
TEST_CASE("test metal arange") {
for (auto t : types) {
if (t == bool_) {
continue;
}
auto out_cpu = arange(1, 100, 2, t, Device::cpu);
auto out_gpu = arange(1, 100, 2, t, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
out_cpu = arange(1, 5, 0.25, t, Device::cpu);
out_gpu = arange(1, 5, 0.25, t, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
}
TEST_CASE("test metal full") {
for (auto t : types) {
auto out_cpu = full({4, 4}, 2, t, Device::cpu);
auto out_gpu = full({4, 4}, 2, t, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
// Check broadcasting works
{
auto x = full({2, 2}, array({3, 4}, {2, 1}), Device::gpu);
CHECK(
array_equal(x, array({3, 3, 4, 4}, {2, 2}), Device::cpu).item<bool>());
x = full({2, 2}, array({3, 4}, {1, 2}), Device::gpu);
CHECK(
array_equal(x, array({3, 4, 3, 4}, {2, 2}), Device::cpu).item<bool>());
}
// Check zeros and ones
{
auto x = zeros({2, 2}, float32, Device::gpu);
auto y = array({0.0, 0.0, 0.0, 0.0}, {2, 2});
CHECK(array_equal(x, y, Device::cpu).item<bool>());
x = ones({2, 2}, float32, Device::gpu);
y = array({1.0, 1.0, 1.0, 1.0}, {2, 2});
CHECK(array_equal(x, y, Device::cpu).item<bool>());
}
}
TEST_CASE("test metal astype") {
array x = array({-4, -3, -2, -1, 0, 1, 2, 3});
// Check all types work
for (auto t : types) {
auto out_cpu = astype(x, t, Device::cpu);
auto out_gpu = astype(x, t, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
x = transpose(reshape(x, {2, 2, 2}), {1, 2, 0});
for (auto t : types) {
auto out_cpu = astype(x, t, Device::cpu);
auto out_gpu = astype(x, t, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
}
TEST_CASE("test metal reshape") {
array x = array({0, 1, 2, 3, 4, 5, 6, 7});
auto out_cpu = reshape(x, {2, 2, 2});
auto out_gpu = reshape(x, {2, 2, 2}, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
x = transpose(reshape(x, {2, 2, 2}), {1, 2, 0});
out_cpu = reshape(x, {4, 2});
out_gpu = reshape(x, {4, 2}, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
out_cpu = reshape(x, {8});
out_gpu = reshape(x, {8}, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
TEST_CASE("test metal reduce") {
{
array a(true);
CHECK_EQ(all(a, Device::gpu).item<bool>(), true);
CHECK_EQ(any(a, Device::gpu).item<bool>(), true);
a = array(std::initializer_list<bool>{});
CHECK_EQ(all(a, Device::gpu).item<bool>(), true);
CHECK_EQ(any(a, Device::gpu).item<bool>(), false);
}
{
std::vector<int> vals(33, 1);
array a(vals.data(), {33});
CHECK_EQ(all(a, Device::gpu).item<bool>(), true);
vals[32] = 0;
a = array(vals.data(), {33});
CHECK_EQ(all(a, Device::gpu).item<bool>(), false);
}
{
std::vector<int> vals(33, 0);
array a(vals.data(), {33});
CHECK_EQ(any(a, Device::gpu).item<bool>(), false);
vals[32] = 1;
a = array(vals.data(), {33});
CHECK_EQ(any(a, Device::gpu).item<bool>(), true);
}
{
std::vector<int> vals(1 << 14, 0);
array a(vals.data(), {1 << 14});
CHECK_EQ(all(a, Device::gpu).item<bool>(), false);
CHECK_EQ(any(a, Device::gpu).item<bool>(), false);
vals[4] = 1;
vals[999] = 1;
vals[2000] = 1;
a = array(vals.data(), {1 << 14});
CHECK_EQ(all(a, Device::gpu).item<bool>(), false);
CHECK_EQ(any(a, Device::gpu).item<bool>(), true);
}
// sum and prod
{
array a = array({true, false, true});
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 2);
CHECK_EQ(prod(a, Device::gpu).item<bool>(), false);
a = array({true, true, true});
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 3);
CHECK_EQ(prod(a, Device::gpu).item<bool>(), true);
a = full({2, 2, 2}, 2.0f);
CHECK_EQ(sum(a, Device::gpu).item<float>(), 16.0f);
CHECK_EQ(prod(a, Device::gpu).item<float>(), 256.0f);
a = full({500, 2, 2}, 1u);
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 2000);
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1u);
a = full({500, 2, 2}, 1);
CHECK_EQ(sum(a, Device::gpu).item<int32_t>(), 2000);
CHECK_EQ(prod(a, Device::gpu).item<int32_t>(), 1);
}
// reducing only some axes and irregular layouts
{
array a(1.0f);
a = broadcast_to(a, {2, 2, 2});
CHECK_EQ(sum(a, Device::gpu).item<float>(), 8.0f);
a = ones({2, 4, 8, 16});
for (auto ax : {0, 1, 2, 3}) {
auto out_gpu = sum(a, ax, false, Device::gpu);
auto out_cpu = sum(a, ax, false, Device::cpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
for (auto ax : {1, 2, 3}) {
auto out_gpu = sum(a, {0, ax}, false, Device::gpu);
auto out_cpu = sum(a, {0, ax}, false, Device::cpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
for (auto ax : {2, 3}) {
auto out_gpu = sum(a, {0, 1, ax}, false, Device::gpu);
auto out_cpu = sum(a, {0, 1, ax}, false, Device::cpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
}
}
TEST_CASE("test metal binary ops") {
// scalar-scalar
{
array a(2.0f);
array b(4.0f);
auto out = add(a, b, Device::gpu);
CHECK_EQ(out.item<float>(), 6.0f);
}
// scalar-vector and vector-scalar
{
array a(2.0f);
array b({2.0f, 4.0f, 6.0f});
auto out = add(a, b, Device::gpu);
auto expected = array({4.0f, 6.0f, 8.0f});
CHECK(array_equal(out, expected, Device::cpu).item<bool>());
out = add(b, a, Device::gpu);
CHECK(array_equal(out, expected, Device::cpu).item<bool>());
}
// vector-vector
{
array a({0.0f, 1.0f, 2.0f});
array b({3.0f, 4.0f, 5.0f});
auto out = add(a, b, Device::gpu);
auto expected = array({3.0f, 5.0f, 7.0f});
CHECK(array_equal(out, expected, Device::cpu).item<bool>());
}
// general
{
array a({0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f}, {2, 2, 2});
array b({0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f}, {2, 2, 2});
a = transpose(a, {0, 2, 1});
b = transpose(b, {1, 0, 2});
auto out_gpu = add(a, b, Device::gpu);
auto out_cpu = add(a, b, Device::cpu);
auto expected =
array({0.0f, 3.0f, 5.0f, 8.0f, 6.0f, 9.0f, 11.0f, 14.0f}, {2, 2, 2});
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
CHECK(array_equal(out_gpu, expected, Device::cpu).item<bool>());
}
// Check all types work
for (auto t : types) {
auto a = astype(array({0, 1, 2}), t);
auto b = astype(array({3, 4, 5}), t);
auto out_cpu = add(a, b, Device::cpu);
auto out_gpu = add(a, b, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
// Check subtraction
{
auto a = array({3, 2, 1});
auto b = array({1, 1, 1});
auto out = subtract(a, b, Device::gpu);
CHECK(array_equal(out, array({2, 1, 0}), Device::cpu).item<bool>());
}
// Check multiplication
{
auto a = array({1, 2, 3});
auto b = array({2, 2, 2});
auto out = multiply(a, b, Device::gpu);
CHECK(array_equal(out, array({2, 4, 6}), Device::cpu).item<bool>());
}
// Check division
{
auto x = array(1.0f);
auto y = array(1.0f);
CHECK_EQ(divide(x, y, Device::gpu).item<float>(), 1.0f);
x = array(1.0f);
y = array(0.5);
CHECK_EQ(divide(x, y, Device::gpu).item<float>(), 2.0f);
x = array(1.0f);
y = array(0.0f);
CHECK(std::isinf(divide(x, y, Device::gpu).item<float>()));
x = array(0.0f);
y = array(0.0f);
CHECK(std::isnan(divide(x, y, Device::gpu).item<float>()));
}
// Check maximum and minimum
{
auto x = array(1.0f);
auto y = array(0.0f);
CHECK_EQ(maximum(x, y, Device::gpu).item<float>(), 1.0f);
CHECK_EQ(minimum(x, y, Device::gpu).item<float>(), 0.0f);
y = array(2.0f);
CHECK_EQ(maximum(x, y, Device::gpu).item<float>(), 2.0f);
CHECK_EQ(minimum(x, y, Device::gpu).item<float>(), 1.0f);
}
// Check equal
{
array x(1.0f);
array y(1.0f);
CHECK(equal(x, y, Device::gpu).item<bool>());
x = array(0.0f);
CHECK(!equal(x, y, Device::gpu).item<bool>());
}
// Greater and less
{
array x(1.0f);
array y(0.0f);
CHECK(greater(x, y, Device::gpu).item<bool>());
CHECK(greater_equal(x, y, Device::gpu).item<bool>());
CHECK(!greater(y, x, Device::gpu).item<bool>());
CHECK(!greater_equal(y, x, Device::gpu).item<bool>());
y = array(1.0f);
CHECK(!greater(x, y, Device::gpu).item<bool>());
CHECK(greater_equal(x, y, Device::gpu).item<bool>());
x = array(0.0f);
y = array(1.0f);
CHECK(less(x, y, Device::gpu).item<bool>());
CHECK(less_equal(x, y, Device::gpu).item<bool>());
CHECK(!less(y, x, Device::gpu).item<bool>());
CHECK(!less_equal(y, x, Device::gpu).item<bool>());
y = array(0.0f);
CHECK(!less(x, y, Device::gpu).item<bool>());
CHECK(less_equal(x, y, Device::gpu).item<bool>());
}
// Check logaddexp
{
constexpr float inf = std::numeric_limits<float>::infinity();
array x(inf);
array y(2.0f);
auto out = logaddexp(x, y, Device::gpu);
CHECK_EQ(out.item<float>(), inf);
x = array(-inf);
out = logaddexp(x, y, Device::gpu);
CHECK_EQ(out.item<float>(), 2.0f);
y = array(-inf);
out = logaddexp(x, y, Device::gpu);
CHECK_EQ(out.item<float>(), -inf);
}
}
TEST_CASE("test metal unary ops") {
// contiguous
{
array x({-1.0f, 0.0f, 1.0f});
auto expected = array({1.0f, 0.0f, 1.0f});
CHECK(array_equal(abs(x, Device::gpu), expected, Device::cpu).item<bool>());
}
// general
{
array x({-1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 1.0f, 3.0f, -3.0f});
auto y = slice(x, {0}, {8}, {2});
auto expected = array({1.0f, 1.0f, 1.0f, 3.0f});
CHECK(array_equal(abs(y, Device::gpu), expected, Device::cpu).item<bool>());
y = slice(x, {4}, {8});
expected = array({1.0f, 1.0f, 3.0f, 3.0f});
CHECK(array_equal(abs(y, Device::gpu), expected, Device::cpu).item<bool>());
}
// Test negative
{
array x(1.0f);
CHECK_EQ(negative(x, Device::gpu).item<float>(), -1.0f);
}
// Check all types work
for (auto t : types) {
if (t == bool_) {
continue;
}
auto in = astype(array({1}), t);
auto out_cpu = negative(in, Device::cpu);
auto out_gpu = negative(in, Device::gpu);
CHECK(array_equal(out_gpu, out_cpu, Device::cpu).item<bool>());
}
// Test log1p
{
constexpr float inf = std::numeric_limits<float>::infinity();
array x(-1.0f);
CHECK_EQ(log1p(x, Device::gpu).item<float>(), -inf);
x = array(0.0f);
CHECK_EQ(log1p(x, Device::gpu).item<float>(), 0.0f);
x = array(1e-9f);
CHECK_EQ(log1p(x, Device::gpu).item<float>(), 1e-9f);
x = array(-2.0f);
CHECK(std::isnan(log1p(x, Device::gpu).item<float>()));
}
}
TEST_CASE("test metal random") {
{
auto key = random::key(0);
auto x = random::bits({}, 4, key, Device::gpu);
auto y = random::bits({}, 4, key, Device::gpu);
CHECK_EQ(x.item<uint32_t>(), 1797259609u);
CHECK_EQ(x.item<uint32_t>(), y.item<uint32_t>());
}
{
auto key = random::key(1);
auto x = random::bits({}, 4, key, Device::gpu);
CHECK_EQ(x.item<uint32_t>(), 507451445u);
}
{
auto key = random::key(0);
auto x = random::bits({3, 1}, 4, key, Device::gpu);
auto expected = array({4146024105u, 1351547692u, 2718843009u}, {3, 1});
CHECK(array_equal(x, expected, Device::cpu).item<bool>());
}
}
TEST_CASE("test metal matmul") {
{
auto a = ones({2, 2});
auto b = ones({2, 2});
auto out = matmul(a, b, Device::gpu);
CHECK(array_equal(out, full({2, 2}, 2.0f), Device::cpu).item<bool>());
}
// Batched matmul
{
auto a = ones({3, 2, 2});
auto b = ones({3, 2, 2});
auto out = matmul(a, b, Device::gpu);
CHECK(array_equal(out, full({3, 2, 2}, 2.0f), Device::cpu).item<bool>());
}
// Broadcast batched matmul
{
auto a = ones({1, 3, 2, 2});
auto b = ones({3, 1, 2, 2});
auto out = matmul(a, b, Device::gpu);
CHECK(array_equal(out, full({3, 3, 2, 2}, 2.0f), Device::cpu).item<bool>());
}
}
TEST_CASE("test metal validation") {
// Run this test with Metal validation enabled
// METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./tests/tests \
// -tc="test metal validation" \
auto x = array({});
eval(exp(x));
auto y = array({});
eval(add(x, y));
eval(sum(x));
x = array({1, 2, 3});
y = array(0);
eval(gather(x, y, 0, {0}));
eval(gather(x, y, 0, {2}));
eval(gather(x, y, 0, {0}));
eval(gather(x, y, 0, {2}));
eval(scatter(x, y, array({2}), 0));
x = arange(0, -3, 1);
eval(x);
array_equal(x, array({})).item<bool>();
x = array({1.0, 0.0});
eval(argmax(x));
eval(scatter_max(array(1), {}, array(2), std::vector<int>{}));
}
TEST_CASE("test metal enable/disable cache") {
// Test enable metal cache
{
metal::set_cache_enabled(true);
CHECK(metal::cache_enabled());
2024-01-19 02:01:59 +08:00
auto& a = metal::allocator();
auto size = 100;
auto buf = a.malloc(size, false);
2024-01-19 02:01:59 +08:00
// Release a
a.free(buf);
2024-01-19 02:01:59 +08:00
// Check size should equals to size
CHECK_EQ(static_cast<MTL::Buffer*>(buf.ptr())->length(), size);
}
2024-01-19 02:01:59 +08:00
// Test disable metal cache
{
metal::set_cache_enabled(false);
CHECK(!metal::cache_enabled());
2024-01-19 02:01:59 +08:00
auto& a = metal::allocator();
auto size = 100;
auto buf = a.malloc(size, false);
auto buf_ptr = static_cast<MTL::Buffer*>(buf.ptr());
unsigned char first_byte = *reinterpret_cast<unsigned char*>(buf_ptr);
2024-01-19 02:01:59 +08:00
// Release a
a.free(buf);
2024-01-19 02:01:59 +08:00
// If release successfully, the first byte should be different from the
// first byte before release
unsigned char new_first_byte = *reinterpret_cast<unsigned char*>(buf_ptr);
2024-01-19 02:01:59 +08:00
CHECK_NE(new_first_byte, first_byte);
}
}