mlx/python/tests/test_nn.py

1252 lines
45 KiB
Python
Raw Normal View History

2023-12-01 03:12:53 +08:00
# Copyright © 2023 Apple Inc.
2023-12-09 03:31:47 +08:00
import os
import tempfile
2023-11-30 02:52:08 +08:00
import unittest
import mlx.core as mx
import mlx.nn as nn
import mlx_tests
2023-12-09 03:31:47 +08:00
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
2023-11-30 02:52:08 +08:00
class TestBase(mlx_tests.MLXTestCase):
def test_module_utilities(self):
m = nn.Sequential(
nn.Sequential(nn.Linear(2, 10), nn.relu),
nn.Sequential(nn.Linear(10, 10), nn.ReLU()),
nn.Linear(10, 1),
mx.sigmoid,
)
children = m.children()
self.assertTrue(isinstance(children, dict))
self.assertEqual(len(children), 1)
self.assertTrue(isinstance(children["layers"], list))
self.assertEqual(len(children["layers"]), 4)
self.assertEqual(children["layers"][3], {})
flat_children = tree_flatten(children, is_leaf=nn.Module.is_module)
self.assertEqual(len(flat_children), 3)
leaves = tree_flatten(m.leaf_modules(), is_leaf=nn.Module.is_module)
self.assertEqual(len(leaves), 4)
self.assertEqual(leaves[0][0], "layers.0.layers.0")
self.assertEqual(leaves[1][0], "layers.1.layers.0")
self.assertEqual(leaves[2][0], "layers.1.layers.1")
self.assertEqual(leaves[3][0], "layers.2")
self.assertTrue(leaves[0][1] is m.layers[0].layers[0])
self.assertTrue(leaves[1][1] is m.layers[1].layers[0])
self.assertTrue(leaves[2][1] is m.layers[1].layers[1])
self.assertTrue(leaves[3][1] is m.layers[2])
m.eval()
def assert_not_training(k, m):
self.assertFalse(m.training)
m.apply_to_modules(assert_not_training)
m.train()
def assert_training(k, m):
self.assertTrue(m.training)
m.apply_to_modules(assert_training)
def test_save_npz_weights(self):
def make_model():
return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2))
m = make_model()
tdir = tempfile.TemporaryDirectory()
npz_file = os.path.join(tdir.name, "model.npz")
m.save_weights(npz_file)
m_load = make_model()
m_load.load_weights(npz_file)
tdir.cleanup()
eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters())
self.assertTrue(all(tree_flatten(eq_tree)))
def test_save_safetensors_weights(self):
def make_model():
return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2), nn.ReLU())
m = make_model()
tdir = tempfile.TemporaryDirectory()
safetensors_file = os.path.join(tdir.name, "model.safetensors")
m.save_weights(safetensors_file)
m_load = make_model()
m_load.load_weights(safetensors_file)
tdir.cleanup()
eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters())
self.assertTrue(all(tree_flatten(eq_tree)))
def test_load_from_weights(self):
m = nn.Linear(2, 2)
# Too few weights
weights = [("weight", mx.ones((2, 2)))]
with self.assertRaises(ValueError):
m.load_weights(weights)
m.load_weights(weights, strict=False)
self.assertTrue(mx.array_equal(m.weight, weights[0][1]))
# Wrong name
with self.assertRaises(ValueError):
m.load_weights([("weihgt", mx.ones((2, 2)))])
# Ok
m.load_weights([("weihgt", mx.ones((2, 2)))], strict=False)
# Too many weights
with self.assertRaises(ValueError):
m.load_weights(
[
("weight", mx.ones((2, 2))),
("bias", mx.ones((2,))),
("bias2", mx.ones((2,))),
]
)
# Wrong shape
with self.assertRaises(ValueError):
m.load_weights(
[
("weight", mx.ones((2, 2))),
("bias", mx.ones((2, 1))),
]
)
# Wrong type
with self.assertRaises(ValueError):
m.load_weights(
[
("weight", mx.ones((2, 2))),
("bias", 3),
]
)
def test_module_state(self):
m = nn.Linear(10, 1)
m.state["hello"] = "world"
self.assertEqual(m.state["hello"], "world")
2023-11-30 02:52:08 +08:00
class TestLayers(mlx_tests.MLXTestCase):
def test_identity(self):
inputs = mx.zeros((10, 4))
layer = nn.Identity()
outputs = layer(inputs)
self.assertEqual(inputs.shape, outputs.shape)
2023-11-30 02:52:08 +08:00
def test_linear(self):
inputs = mx.zeros((10, 4))
layer = nn.Linear(input_dims=4, output_dims=8)
outputs = layer(inputs)
self.assertEqual(outputs.shape, (10, 8))
2023-11-30 02:52:08 +08:00
def test_bilinear(self):
inputs1 = mx.zeros((10, 2))
inputs2 = mx.zeros((10, 4))
layer = nn.Bilinear(input1_dims=2, input2_dims=4, output_dims=6)
outputs = layer(inputs1, inputs2)
self.assertEqual(outputs.shape, (10, 6))
2023-11-30 02:52:08 +08:00
def test_group_norm(self):
x = mx.arange(100, dtype=mx.float32)
x = x.reshape(1, 10, 10, 1)
x = mx.broadcast_to(x, (2, 10, 10, 4))
x = mx.concatenate([x, 0.5 * x], axis=-1)
# Group norm in groups last mode
g = nn.GroupNorm(2, 8)
y = g(x)
means = y.reshape(2, -1, 2).mean(axis=1)
var = y.reshape(2, -1, 2).var(axis=1)
self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
g.weight = g.weight * 2
g.bias = g.bias + 3
y = g(x)
means = y.reshape(2, -1, 2).mean(axis=1)
var = y.reshape(2, -1, 2).var(axis=1)
self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
# Group norm in groups first mode
g = nn.GroupNorm(2, 8, pytorch_compatible=True)
y = g(x)
means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
g.weight = g.weight * 2
g.bias = g.bias + 3
y = g(x)
means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
def test_instance_norm(self):
# Test InstanceNorm1d
x = mx.array(
[
[
[-0.0119524, 1.1263, 2.02223],
[-0.500331, 0.517899, -1.21143],
[1.12958, -0.21413, -2.48738],
[1.39955, 0.891329, 1.63289],
],
[
[0.241417, -0.619157, -0.77484],
[-1.42512, 0.970817, -1.31352],
[2.739, -1.2506, 1.56844],
[-1.23175, 0.32756, 1.13969],
],
]
)
inorm = nn.InstanceNorm(dims=3)
y = inorm(x)
expected_y = [
[
[-0.657082, 1.07593, 1.0712],
[-1.27879, -0.123074, -0.632505],
[0.796101, -1.56572, -1.30476],
[1.13978, 0.612862, 0.866067],
],
[
[0.0964426, -0.557906, -0.759885],
[-0.904772, 1.30444, -1.20013],
[1.59693, -1.29752, 1.15521],
[-0.7886, 0.550987, 0.804807],
],
]
self.assertTrue(x.shape == y.shape)
self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
# Test InstanceNorm2d
x = mx.array(
[
[
[
[-0.458824, 0.483254, -0.58611],
[-0.447996, -0.176577, -0.622545],
[0.0486988, -0.0611224, 1.8845],
],
[
[1.13049, 0.345315, -0.926389],
[0.301795, 0.99207, -0.184927],
[-2.23876, -0.758631, -1.12639],
],
[
[0.0986325, -1.82973, -0.241765],
[-1.25257, 0.154442, -0.556204],
[-0.329399, -0.319107, 0.830584],
],
],
[
[
[1.04407, 0.073752, 0.407081],
[0.0800776, 1.2513, 1.20627],
[0.782321, -0.444367, 0.563132],
],
[
[0.671423, -1.21689, -1.88979],
[-0.110299, -1.42248, 1.17838],
[0.159905, 0.516452, -0.539121],
],
[
[0.810252, 1.50456, 1.08659],
[0.182597, 0.0576239, 0.973883],
[-0.0621687, 0.184253, 0.784216],
],
],
]
)
inorm = nn.InstanceNorm(dims=3)
y = inorm(x)
expected_y = [
[
[
[-0.120422, 0.801503, -0.463983],
[-0.108465, -0.0608611, -0.504602],
[0.440008, 0.090032, 2.29032],
],
[
[1.63457, 0.621224, -0.843335],
[0.719488, 1.4665, -0.0167344],
[-2.08591, -0.821575, -1.0663],
],
[
[0.495147, -2.22145, -0.0800989],
[-0.996913, 0.371763, -0.430643],
[0.022495, -0.24714, 1.11538],
],
],
[
[
[1.5975, 0.0190292, -0.0123306],
[-0.776381, 1.28291, 0.817237],
[0.952927, -0.537076, 0.149652],
],
[
[0.679836, -1.36624, -2.39651],
[-1.24519, -1.5869, 0.788287],
[-0.579802, 0.494186, -0.994499],
],
[
[1.02171, 1.55474, 0.693008],
[-0.523922, 0.00171862, 0.576016],
[-1.12667, 0.137632, 0.37914],
],
],
]
self.assertTrue(x.shape == y.shape)
self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
# # Test InstanceNorm3d
x = mx.array(
[
[
[
[[0.777621, 0.528145, -1.56133], [-2.1722, 0.128192, 0.153862]],
[
[-1.41317, 0.476288, -1.20411],
[0.284446, -0.649858, 0.152112],
],
],
[
[[0.11, -0.12431, 1.18768], [-0.837743, 1.93502, 0.00236324]],
[
[-2.40205, -1.25873, -2.04243],
[0.336682, -0.261986, 1.54289],
],
],
[
[
[0.789185, -1.63747, 0.67917],
[-1.42998, -1.73247, -0.402572],
],
[
[-0.459489, -2.15559, -0.249959],
[0.0298199, 0.10275, -0.821897],
],
],
],
[
[
[
[-2.12354, 0.643973, 0.72391],
[0.317797, -0.682916, 0.016364],
],
[
[-0.146628, -0.987925, 0.573199],
[0.0329215, 1.54086, 0.213092],
],
],
[
[
[-1.55784, 0.71179, -0.0678402],
[2.41031, -0.290786, 0.00449439],
],
[
[0.226341, 0.057712, -1.58342],
[0.265387, -0.742304, 1.28133],
],
],
[
[
[0.990317, -0.399875, -0.357647],
[0.475161, -1.10479, -1.07389],
],
[
[-1.37804, 1.40097, 0.141618],
[-0.501041, 0.0723374, -0.386141],
],
],
],
]
)
inorm = nn.InstanceNorm(dims=3)
y = inorm(x)
expected_y = [
[
[
[[1.23593, 0.821849, -1.30944], [-1.54739, 0.462867, 0.357126]],
[[-0.831204, 0.775304, -0.962338], [0.770588, -0.23548, 0.355425]],
],
[
[[0.605988, 0.236231, 1.36163], [-0.288258, 2.0846, 0.209922]],
[[-1.76427, -0.78198, -1.77689], [0.819875, 0.112659, 1.70677]],
],
[
[[1.24684, -1.12192, 0.867539], [-0.847068, -1.20719, -0.183531]],
[
[0.0686449, -1.58697, -0.0352458],
[0.530334, 0.440032, -0.590967],
],
],
],
[
[
[[-1.75315, 0.733967, 1.04349], [0.343736, -0.822472, 0.080661]],
[[-0.0551618, -1.18025, 0.838402], [0.0990544, 1.78602, 0.348368]],
],
[
[[-1.26726, 0.813517, -0.033924], [2.14101, -0.362504, 0.0645089]],
[[0.265184, 0.0462839, -2.09632], [0.298721, -0.892134, 1.80203]],
],
[
[[0.921369, -0.490465, -0.428293], [0.478897, -1.31732, -1.40296]],
[[-1.11283, 1.62192, 0.251107], [-0.35957, 0.0634394, -0.467067]],
],
],
]
self.assertTrue(x.shape == y.shape)
self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
# Test repr
self.assertTrue(str(inorm) == "InstanceNorm(3, eps=1e-05, affine=False)")
def test_batch_norm(self):
mx.random.seed(42)
x = mx.random.normal((5, 4), dtype=mx.float32)
# Batch norm
bn = nn.BatchNorm(num_features=4, affine=True)
self.assertTrue(mx.allclose(bn.running_mean, mx.zeros_like(bn.running_mean)))
self.assertTrue(mx.allclose(bn.running_var, mx.ones_like(bn.running_var)))
y = bn(x)
expected_y = mx.array(
[
[-0.439520, 1.647328, -0.955515, 1.966031],
[-1.726690, -1.449826, -0.234026, -0.723364],
[0.938414, -0.349603, -0.354470, -0.175369],
[0.305006, 0.234914, -0.393017, -0.459385],
[0.922789, -0.082813, 1.937028, -0.607913],
],
)
expected_mean = mx.array([0.008929, 0.005680, -0.016092, 0.027778])
expected_var = mx.array([0.928435, 1.00455, 1.04117, 0.94258])
self.assertTrue(x.shape == y.shape)
self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
self.assertTrue(mx.allclose(bn.running_mean, expected_mean, atol=1e-5))
self.assertTrue(mx.allclose(bn.running_var, expected_var, atol=1e-5))
# test eval mode
bn.eval()
y = bn(x)
expected_y = mx.array(
[
[-0.15984, 1.73159, -1.25456, 1.57891],
[-0.872193, -1.4281, -0.414439, -0.228678],
[0.602743, -0.30566, -0.554687, 0.139639],
[0.252199, 0.29066, -0.599572, -0.0512532],
[0.594096, -0.0334829, 2.11359, -0.151081],
]
)
self.assertTrue(x.shape == y.shape)
self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
# test_no_affine
bn = nn.BatchNorm(num_features=4, affine=False)
y = bn(x)
expected_y = mx.array(
[
[-0.439520, 1.647328, -0.955515, 1.966031],
[-1.726690, -1.449826, -0.234026, -0.723364],
[0.938414, -0.349603, -0.354470, -0.175369],
[0.305006, 0.234914, -0.393017, -0.459385],
[0.922789, -0.082813, 1.937028, -0.607913],
]
)
self.assertTrue(x.shape == y.shape)
self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
# test with 3D input
mx.random.seed(42)
N = 2
L = 4
C = 5
x = mx.random.normal((N, L, C), dtype=mx.float32)
# Batch norm
bn = nn.BatchNorm(num_features=C, affine=True)
self.assertTrue(mx.allclose(bn.running_mean, mx.zeros_like(bn.running_mean)))
self.assertTrue(mx.allclose(bn.running_var, mx.ones_like(bn.running_var)))
y = bn(x)
self.assertTrue(x.shape == y.shape)
expected_y = mx.array(
[
[
[-0.335754, 0.342054, 1.02653, 0.628588, -1.63899],
[1.92092, 0.432319, 0.343043, 1.95489, 1.0696],
[-0.853748, 1.3661, 0.868569, 0.0199196, -0.887284],
[0.459206, -0.684822, -0.706354, -0.271531, 0.566341],
],
[
[-0.921179, 0.684951, -0.77466, -0.490372, -0.247032],
[1.10839, -2.13179, 0.628924, -1.62639, -0.539708],
[-0.348943, 0.412194, -2.03818, 0.524972, 1.64568],
[-1.02889, -0.421, 0.652127, -0.740079, 0.0313996],
],
]
)
self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
expected_mean = mx.array(
[[[0.00207845, -5.3259e-05, 0.04755, -0.0697296, 0.0236228]]]
)
expected_var = mx.array([[[0.968415, 1.05322, 0.96913, 0.932305, 0.967224]]])
self.assertTrue(mx.allclose(bn.running_mean, expected_mean, atol=1e-5))
self.assertTrue(mx.allclose(bn.running_var, expected_var, atol=1e-5))
x = mx.random.normal((N, L, C, L, C), dtype=mx.float32)
with self.assertRaises(ValueError):
y = bn(x)
# Check that the running stats are in the param dictionary
bn_parameters = bn.parameters()
self.assertIn("running_mean", bn_parameters)
self.assertIn("running_var", bn_parameters)
self.assertIn("weight", bn_parameters)
self.assertIn("bias", bn_parameters)
bn_trainable = bn.trainable_parameters()
self.assertNotIn("running_mean", bn_trainable)
self.assertNotIn("running_var", bn_trainable)
self.assertIn("weight", bn_trainable)
self.assertIn("bias", bn_trainable)
bn.unfreeze()
bn_trainable = bn.trainable_parameters()
self.assertNotIn("running_mean", bn_trainable)
self.assertNotIn("running_var", bn_trainable)
self.assertIn("weight", bn_trainable)
self.assertIn("bias", bn_trainable)
def test_batch_norm_stats(self):
batch_size = 2
num_features = 4
h = 3
w = 3
momentum = 0.1
batch_norm = nn.BatchNorm(num_features)
batch_norm.train()
running_mean = batch_norm.running_mean
running_var = batch_norm.running_var
data = mx.random.normal((batch_size, num_features))
normalized_data = batch_norm(data)
means = mx.mean(data, axis=0)
variances = mx.var(data, axis=0)
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
self.assertTrue(mx.allclose(batch_norm.running_mean, running_mean, atol=1e-5))
self.assertTrue(mx.allclose(batch_norm.running_var, running_var, atol=1e-5))
batch_norm = nn.BatchNorm(num_features)
batch_norm.train()
running_mean = batch_norm.running_mean
running_var = batch_norm.running_var
data = mx.random.normal((batch_size, h, w, num_features))
normalized_data = batch_norm(data)
means = mx.mean(data, axis=(0, 1, 2))
variances = mx.var(data, axis=(0, 1, 2))
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
self.assertTrue(mx.allclose(batch_norm.running_mean, running_mean, atol=1e-5))
self.assertTrue(mx.allclose(batch_norm.running_var, running_var, atol=1e-5))
self.assertEqual(batch_norm.running_mean.shape, running_mean.shape)
self.assertEqual(batch_norm.running_var.shape, running_var.shape)
2023-11-30 02:52:08 +08:00
def test_conv1d(self):
N = 5
L = 12
ks = 3
C_in = 2
C_out = 4
x = mx.ones((N, L, C_in))
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks)
c.weight = mx.ones_like(c.weight)
y = c(x)
self.assertEqual(y.shape, (N, L - ks + 1, C_out))
2023-11-30 02:52:08 +08:00
self.assertTrue(mx.allclose(y, mx.full(y.shape, ks * C_in, mx.float32)))
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, stride=2)
y = c(x)
self.assertEqual(y.shape, (N, (L - ks + 1) // 2, C_out))
2023-11-30 02:52:08 +08:00
self.assertTrue("bias" in c.parameters())
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
self.assertTrue("bias" not in c.parameters())
def test_conv2d(self):
x = mx.ones((4, 8, 8, 3))
c = nn.Conv2d(3, 1, 8)
y = c(x)
self.assertEqual(y.shape, (4, 1, 1, 1))
2023-11-30 02:52:08 +08:00
c.weight = mx.ones_like(c.weight) / 8 / 8 / 3
y = c(x)
self.assertTrue(np.allclose(y[:, 0, 0, 0], x.mean(axis=(1, 2, 3))))
# 3x3 conv no padding stride 1
c = nn.Conv2d(3, 8, 3)
y = c(x)
self.assertEqual(y.shape, (4, 6, 6, 8))
2023-11-30 02:52:08 +08:00
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
# 3x3 conv padding 1 stride 1
c = nn.Conv2d(3, 8, 3, padding=1)
y = c(x)
self.assertEqual(y.shape, (4, 8, 8, 8))
2023-11-30 02:52:08 +08:00
self.assertLess(mx.abs(y[:, 1:7, 1:7] - c.weight.sum((1, 2, 3))).max(), 1e-4)
self.assertLess(
mx.abs(y[:, 0, 0] - c.weight[:, 1:, 1:].sum(axis=(1, 2, 3))).max(),
1e-4,
)
self.assertLess(
mx.abs(y[:, 7, 7] - c.weight[:, :-1, :-1].sum(axis=(1, 2, 3))).max(),
1e-4,
)
self.assertLess(
mx.abs(y[:, 1:7, 7] - c.weight[:, :, :-1].sum(axis=(1, 2, 3))).max(),
1e-4,
)
self.assertLess(
mx.abs(y[:, 7, 1:7] - c.weight[:, :-1, :].sum(axis=(1, 2, 3))).max(),
1e-4,
)
# 3x3 conv no padding stride 2
c = nn.Conv2d(3, 8, 3, padding=0, stride=2)
y = c(x)
self.assertEqual(y.shape, (4, 3, 3, 8))
2023-11-30 02:52:08 +08:00
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
def test_sequential(self):
x = mx.ones((10, 2))
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
y = m(x)
self.assertEqual(y.shape, (10, 1))
2023-11-30 02:52:08 +08:00
params = m.parameters()
self.assertTrue("layers" in params)
self.assertEqual(len(params["layers"]), 3)
self.assertTrue("weight" in params["layers"][0])
self.assertEqual(len(params["layers"][1]), 0)
self.assertTrue("weight" in params["layers"][2])
m.layers[1] = nn.relu
y2 = m(x)
self.assertTrue(mx.array_equal(y, y2))
def test_gelu(self):
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
2023-11-30 02:52:08 +08:00
# From: jax.nn.gelu(np.array(inputs), approximate=False)
expected = np.array(
[1.0093501, -0.16925684, 0.22918941, 0.60498625, 0.49459383]
)
2023-11-30 02:52:08 +08:00
out = nn.GELU()(mx.array(inputs))
self.assertTrue(np.allclose(out, expected))
2023-11-30 02:52:08 +08:00
# Crudely check the approximations
x = mx.arange(-6.0, 6.0, 12 / 100)
y = nn.gelu(x)
y_hat1 = nn.gelu_approx(x)
y_hat2 = nn.gelu_fast_approx(x)
self.assertLess(mx.abs(y - y_hat1).max(), 0.0003)
self.assertLess(mx.abs(y - y_hat2).max(), 0.02)
2023-11-30 02:52:08 +08:00
def test_sin_pe(self):
m = nn.SinusoidalPositionalEncoding(16, min_freq=0.01)
x = mx.arange(10)
y = m(x)
self.assertEqual(y.shape, (10, 16))
2023-11-30 02:52:08 +08:00
similarities = y @ y.T
self.assertLess(
mx.abs(similarities[mx.arange(10), mx.arange(10)] - 1).max(), 1e-5
)
2024-01-05 05:16:36 +08:00
def test_sigmoid(self):
x = mx.array([1.0, 0.0, -1.0])
y1 = mx.sigmoid(x)
y2 = nn.activations.sigmoid(x)
y3 = nn.Sigmoid()(x)
self.assertEqualArray(y1, y2, atol=0, rtol=0)
self.assertEqualArray(y1, y3, atol=0, rtol=0)
def test_relu(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.relu(x)
self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0])))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_leaky_relu(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.leaky_relu(x)
self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.01, 0.0])))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
y = nn.LeakyReLU(negative_slope=0.1)(x)
self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.1, 0.0])))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_elu(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.elu(x)
epsilon = 1e-4
expected_y = mx.array([1.0, -0.6321, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
y = nn.ELU(alpha=1.1)(x)
epsilon = 1e-4
expected_y = mx.array([1.0, -0.6953, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_relu6(self):
x = mx.array([1.0, -1.0, 0.0, 7.0, -7.0])
y = nn.relu6(x)
self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0, 6.0, 0.0])))
self.assertEqual(y.shape, (5,))
self.assertEqual(y.dtype, mx.float32)
def test_softmax(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.softmax(x)
epsilon = 1e-4
expected_y = mx.array([0.6652, 0.0900, 0.2447])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_softplus(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.softplus(x)
epsilon = 1e-4
expected_y = mx.array([1.3133, 0.3133, 0.6931])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_softsign(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.softsign(x)
epsilon = 1e-4
expected_y = mx.array([0.5, -0.5, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_softshrink(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.softshrink(x)
epsilon = 1e-4
expected_y = mx.array([0.5, -0.5, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
y = nn.Softshrink(lambd=0.7)(x)
expected_y = mx.array([0.3, -0.3, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_celu(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.celu(x)
epsilon = 1e-4
expected_y = mx.array([1.0, -0.6321, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
y = nn.CELU(alpha=1.1)(x)
expected_y = mx.array([1.0, -0.6568, 0.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_log_softmax(self):
x = mx.array([1.0, 2.0, 3.0])
y = nn.log_softmax(x)
epsilon = 1e-4
expected_y = mx.array([-2.4076, -1.4076, -0.4076])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_log_sigmoid(self):
x = mx.array([1.0, -1.0, 0.0])
y = nn.log_sigmoid(x)
epsilon = 1e-4
expected_y = mx.array([-0.3133, -1.3133, -0.6931])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32)
def test_prelu(self):
self.assertEqualArray(
nn.PReLU()(mx.array([1.0, -1.0, 0.0, 0.5])),
mx.array([1.0, -0.25, 0.0, 0.5]),
)
def test_mish(self):
self.assertEqualArray(
nn.Mish()(mx.array([1.0, -1.0, 0.0, 0.5])),
mx.array([0.8651, -0.3034, 0.0000, 0.3752]),
)
def test_hardswish(self):
x = mx.array([-3.0, -1.5, 0.0, 1.5, 3.0])
y = nn.hardswish(x)
epsilon = 1e-4
expected_y = mx.array([0.0, -0.375, 0.0, 1.125, 3.0])
self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
self.assertEqual(y.shape, (5,))
self.assertEqual(y.dtype, mx.float32)
def test_glu(self):
x = mx.array([[[1.0, 2.0, 3.0, 4.0]]], dtype=mx.float32)
y = mx.array([[[0.952574, 1.96403]]], dtype=mx.float32)
out = nn.glu(x)
self.assertEqualArray(out, y)
2023-12-16 08:47:59 +08:00
def test_rope(self):
for kwargs in [{}, {"traditional": False}, {"base": 10000}, {"scale": 0.25}]:
2023-12-16 08:47:59 +08:00
rope = nn.RoPE(4, **kwargs)
shape = (1, 3, 4)
x = mx.random.uniform(shape=shape)
y = rope(x)
self.assertTrue(y.shape, shape)
self.assertTrue(y.dtype, mx.float32)
y = rope(x, offset=3)
self.assertTrue(y.shape, shape)
y = rope(x.astype(mx.float16))
self.assertTrue(y.dtype, mx.float16)
2023-12-22 06:36:38 +08:00
def test_alibi(self):
alibi = nn.ALiBi()
shape = [1, 8, 20, 20]
x = mx.random.uniform(shape=shape)
y = alibi(x)
self.assertTrue(y.shape, shape)
self.assertTrue(y.dtype, mx.float32)
y = alibi(x.astype(mx.float16))
self.assertTrue(y.dtype, mx.float16)
2023-12-22 06:36:38 +08:00
def test_dropout(self):
x = mx.ones((2, 4))
y = nn.Dropout(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float32)
x = mx.ones((2, 4), dtype=mx.bfloat16)
y = nn.Dropout(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.bfloat16)
x = mx.ones((2, 4), dtype=mx.float16)
y = nn.Dropout(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float16)
def test_dropout2d(self):
x = mx.ones((2, 4, 4, 4))
y = nn.Dropout2d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float32)
x = mx.ones((2, 4, 4, 4), dtype=mx.bfloat16)
y = nn.Dropout2d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.bfloat16)
x = mx.ones((2, 4, 4, 4), dtype=mx.float16)
y = nn.Dropout2d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float16)
def test_dropout3d(self):
x = mx.ones((2, 4, 4, 4, 4))
y = nn.Dropout3d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float32)
x = mx.ones((2, 4, 4, 4, 4), dtype=mx.bfloat16)
y = nn.Dropout3d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.bfloat16)
x = mx.ones((2, 4, 4, 4, 4), dtype=mx.float16)
y = nn.Dropout3d(0.5)(x)
self.assertTrue(y.shape, x.shape)
self.assertTrue(y.dtype, mx.float16)
def test_pooling(self):
# Test 1d pooling
x = mx.array(
[
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],
[[12, 13, 14], [15, 16, 17], [18, 19, 20], [21, 22, 23]],
]
)
expected_max_pool_output_no_padding_stride_1 = [
[[3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
[[15.0, 16.0, 17.0], [18.0, 19.0, 20.0], [21.0, 22.0, 23.0]],
]
expected_max_pool_output_no_padding_stride_2 = [
[[3.0, 4.0, 5.0], [9.0, 10.0, 11.0]],
[[15.0, 16.0, 17.0], [21.0, 22.0, 23.0]],
]
expected_max_pool_output_padding_1_stride_2 = [
[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
[[12.0, 13.0, 14.0], [18.0, 19.0, 20.0], [21.0, 22.0, 23.0]],
]
expected_max_pool_output_padding_1_stride_2_kernel_3 = [
[[3.0, 4.0, 5.0], [9.0, 10.0, 11.0]],
[[15.0, 16.0, 17.0], [21.0, 22.0, 23.0]],
]
expected_avg_pool_output_no_padding_stride_1 = [
[
[1.5000, 2.5000, 3.5000],
[4.5000, 5.5000, 6.5000],
[7.5000, 8.5000, 9.5000],
],
[
[13.5000, 14.5000, 15.5000],
[16.5000, 17.5000, 18.5000],
[19.5000, 20.5000, 21.5000],
],
]
expected_avg_pool_output_no_padding_stride_2 = [
[[1.5000, 2.5000, 3.5000], [7.5000, 8.5000, 9.5000]],
[[13.5000, 14.5000, 15.5000], [19.5000, 20.5000, 21.5000]],
]
expected_avg_pool_output_padding_1_stride_2 = [
[
[0.0000, 0.5000, 1.0000],
[4.5000, 5.5000, 6.5000],
[4.5000, 5.0000, 5.5000],
],
[
[6.0000, 6.5000, 7.0000],
[16.5000, 17.5000, 18.5000],
[10.5000, 11.0000, 11.5000],
],
]
expected_avg_pool_output_padding_1_kernel_3 = [
[[1, 1.66667, 2.33333], [6, 7, 8]],
[[9, 9.66667, 10.3333], [18, 19, 20]],
]
self.assertTrue(
np.array_equal(
nn.MaxPool1d(kernel_size=2, stride=1, padding=0)(x),
expected_max_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool1d(kernel_size=2, stride=2, padding=0)(x),
expected_max_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool1d(kernel_size=2, stride=2, padding=1)(x),
expected_max_pool_output_padding_1_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool1d(kernel_size=3, stride=2, padding=1)(x),
expected_max_pool_output_padding_1_stride_2_kernel_3,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool1d(kernel_size=2, stride=1, padding=0)(x),
expected_avg_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool1d(kernel_size=2, stride=2, padding=0)(x),
expected_avg_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool1d(kernel_size=2, stride=2, padding=1)(x),
expected_avg_pool_output_padding_1_stride_2,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool1d(kernel_size=3, stride=2, padding=1)(x),
expected_avg_pool_output_padding_1_kernel_3,
)
)
# Test 2d pooling
x = mx.array(
[
[
[[0, 16], [1, 17], [2, 18], [3, 19]],
[[4, 20], [5, 21], [6, 22], [7, 23]],
[[8, 24], [9, 25], [10, 26], [11, 27]],
[[12, 28], [13, 29], [14, 30], [15, 31]],
]
]
)
expected_max_pool_output_no_padding_stride_1 = [
[
[[5, 21], [6, 22], [7, 23]],
[[9, 25], [10, 26], [11, 27]],
[[13, 29], [14, 30], [15, 31]],
]
]
expected_max_pool_output_no_padding_stride_2 = [
[[[5, 21], [7, 23]], [[13, 29], [15, 31]]]
]
expected_max_pool_output_padding_1 = [
[
[[0, 16], [2, 18], [3, 19]],
[[8, 24], [10, 26], [11, 27]],
[[12, 28], [14, 30], [15, 31]],
]
]
expected_mean_pool_output_no_padding_stride_1 = [
[
[[2.5000, 18.5000], [3.5000, 19.5000], [4.5000, 20.5000]],
[[6.5000, 22.5000], [7.5000, 23.5000], [8.5000, 24.5000]],
[[10.5000, 26.5000], [11.5000, 27.5000], [12.5000, 28.5000]],
]
]
expected_mean_pool_output_no_padding_stride_2 = [
[
[[2.5000, 18.5000], [4.5000, 20.5000]],
[[10.5000, 26.5000], [12.5000, 28.5000]],
]
]
expected_mean_pool_output_padding_1 = [
[
[[0.0000, 4.0000], [0.7500, 8.7500], [0.7500, 4.7500]],
[[3.0000, 11.0000], [7.5000, 23.5000], [4.5000, 12.5000]],
[[3.0000, 7.0000], [6.7500, 14.7500], [3.7500, 7.7500]],
]
]
self.assertTrue(
np.array_equal(
nn.MaxPool2d(kernel_size=2, stride=1, padding=0)(x),
expected_max_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool2d(kernel_size=2, stride=2, padding=0)(x),
expected_max_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool2d(kernel_size=2, stride=2, padding=1)(x),
expected_max_pool_output_padding_1,
)
)
# Average pooling
self.assertTrue(
np.allclose(
nn.AvgPool2d(kernel_size=2, stride=1, padding=0)(x),
expected_mean_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.array_equal(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0)(x),
expected_mean_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.AvgPool2d(kernel_size=2, stride=2, padding=1)(x),
expected_mean_pool_output_padding_1,
)
)
# Test multiple batches
x = mx.array(
[
[
[[0, 1], [2, 3], [4, 5], [6, 7]],
[[8, 9], [10, 11], [12, 13], [14, 15]],
[[16, 17], [18, 19], [20, 21], [22, 23]],
[[24, 25], [26, 27], [28, 29], [30, 31]],
],
[
[[32, 33], [34, 35], [36, 37], [38, 39]],
[[40, 41], [42, 43], [44, 45], [46, 47]],
[[48, 49], [50, 51], [52, 53], [54, 55]],
[[56, 57], [58, 59], [60, 61], [62, 63]],
],
]
)
expected_max_pool_output = [
[[[10.0, 11.0], [14.0, 15.0]], [[26.0, 27.0], [30.0, 31.0]]],
[[[42.0, 43.0], [46.0, 47.0]], [[58.0, 59.0], [62.0, 63.0]]],
]
expected_avg_pool_output = [
[[[2.22222, 2.66667], [5.33333, 6]], [[11.3333, 12], [20, 21]]],
[[[16.4444, 16.8889], [26.6667, 27.3333]], [[32.6667, 33.3333], [52, 53]]],
]
self.assertTrue(
np.array_equal(
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x),
expected_max_pool_output,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool2d(kernel_size=3, stride=2, padding=1)(x),
expected_avg_pool_output,
)
)
# Test irregular kernel (2, 4), stride (3, 1) and padding (1, 2)
x = mx.array(
[
[
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],
[[12, 13, 14], [15, 16, 17], [18, 19, 20], [21, 22, 23]],
[[24, 25, 26], [27, 28, 29], [30, 31, 32], [33, 34, 35]],
[[36, 37, 38], [39, 40, 41], [42, 43, 44], [45, 46, 47]],
],
[
[[48, 49, 50], [51, 52, 53], [54, 55, 56], [57, 58, 59]],
[[60, 61, 62], [63, 64, 65], [66, 67, 68], [69, 70, 71]],
[[72, 73, 74], [75, 76, 77], [78, 79, 80], [81, 82, 83]],
[[84, 85, 86], [87, 88, 89], [90, 91, 92], [93, 94, 95]],
],
]
)
expected_irregular_max_pool_output = [
[
[
[3.0, 4.0, 5.0],
[6.0, 7.0, 8.0],
[9.0, 10.0, 11.0],
[9.0, 10.0, 11.0],
[9.0, 10.0, 11.0],
],
[
[39.0, 40.0, 41.0],
[42.0, 43.0, 44.0],
[45.0, 46.0, 47.0],
[45.0, 46.0, 47.0],
[45.0, 46.0, 47.0],
],
],
[
[
[51.0, 52.0, 53.0],
[54.0, 55.0, 56.0],
[57.0, 58.0, 59.0],
[57.0, 58.0, 59.0],
[57.0, 58.0, 59.0],
],
[
[87.0, 88.0, 89.0],
[90.0, 91.0, 92.0],
[93.0, 94.0, 95.0],
[93.0, 94.0, 95.0],
[93.0, 94.0, 95.0],
],
],
]
expected_irregular_average_pool_output = [
[
[
[0.3750, 0.6250, 0.8750],
[1.1250, 1.5000, 1.8750],
[2.2500, 2.7500, 3.2500],
[2.2500, 2.6250, 3.0000],
[1.8750, 2.1250, 2.3750],
],
[
[15.7500, 16.2500, 16.7500],
[24.7500, 25.5000, 26.2500],
[34.5000, 35.5000, 36.5000],
[27.0000, 27.7500, 28.5000],
[18.7500, 19.2500, 19.7500],
],
],
[
[
[12.3750, 12.6250, 12.8750],
[19.1250, 19.5000, 19.8750],
[26.2500, 26.7500, 27.2500],
[20.2500, 20.6250, 21.0000],
[13.8750, 14.1250, 14.3750],
],
[
[39.7500, 40.2500, 40.7500],
[60.7500, 61.5000, 62.2500],
[82.5000, 83.5000, 84.5000],
[63.0000, 63.7500, 64.5000],
[42.7500, 43.2500, 43.7500],
],
],
]
self.assertTrue(
np.array_equal(
nn.MaxPool2d(kernel_size=(2, 4), stride=(3, 1), padding=(1, 2))(x),
expected_irregular_max_pool_output,
)
)
self.assertTrue(
np.allclose(
nn.AvgPool2d(kernel_size=(2, 4), stride=(3, 1), padding=(1, 2))(x),
expected_irregular_average_pool_output,
)
)
# Test repr
self.assertEqual(
str(nn.MaxPool1d(kernel_size=3, padding=2)),
"MaxPool1d(kernel_size=(3,), stride=(3,), padding=(2,))",
)
self.assertEqual(
str(nn.AvgPool1d(kernel_size=2, stride=3)),
"AvgPool1d(kernel_size=(2,), stride=(3,), padding=(0,))",
)
self.assertEqual(
str(nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
"MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))",
)
self.assertEqual(
str(nn.AvgPool2d(kernel_size=(1, 2), stride=2, padding=(1, 2))),
"AvgPool2d(kernel_size=(1, 2), stride=(2, 2), padding=(1, 2))",
)
2023-11-30 02:52:08 +08:00
if __name__ == "__main__":
unittest.main()