mlx/docs/src/python/nn.rst

187 lines
5.4 KiB
ReStructuredText
Raw Normal View History

2023-11-30 02:30:41 +08:00
.. _nn:
.. currentmodule:: mlx.nn
Neural Networks
===============
Writing arbitrarily complex neural networks in MLX can be done using only
:class:`mlx.core.array` and :meth:`mlx.core.value_and_grad`. However, this requires the
user to write again and again the same simple neural network operations as well
as handle all the parameter state and initialization manually and explicitly.
The module :mod:`mlx.nn` solves this problem by providing an intuitive way of
composing neural network layers, initializing their parameters, freezing them
for finetuning and more.
Quick Start with Neural Networks
---------------------------------
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
class MLP(nn.Module):
def __init__(self, in_dims: int, out_dims: int):
super().__init__()
self.layers = [
nn.Linear(in_dims, 128),
nn.Linear(128, 128),
nn.Linear(128, out_dims),
]
def __call__(self, x):
for i, l in enumerate(self.layers):
x = mx.maximum(x, 0) if i > 0 else x
x = l(x)
return x
# The model is created with all its parameters but nothing is initialized
# yet because MLX is lazily evaluated
mlp = MLP(2, 10)
# We can access its parameters by calling mlp.parameters()
params = mlp.parameters()
print(params["layers"][0]["weight"].shape)
# Printing a parameter will cause it to be evaluated and thus initialized
print(params["layers"][0])
# We can also force evaluate all parameters to initialize the model
mx.eval(mlp.parameters())
# A simple loss function.
# NOTE: It doesn't matter how it uses the mlp model. It currently captures
# it from the local scope. It could be a positional argument or a
# keyword argument.
def l2_loss(x, y):
y_hat = mlp(x)
return (y_hat - y).square().mean()
# Calling `nn.value_and_grad` instead of `mx.value_and_grad` returns the
# gradient with respect to `mlp.trainable_parameters()`
loss_and_grad = nn.value_and_grad(mlp, l2_loss)
.. _module_class:
The Module Class
----------------
The workhorse of any neural network library is the :class:`Module` class. In
MLX the :class:`Module` class is a container of :class:`mlx.core.array` or
:class:`Module` instances. Its main function is to provide a way to
recursively **access** and **update** its parameters and those of its
submodules.
Parameters
^^^^^^^^^^
A parameter of a module is any public member of type :class:`mlx.core.array` (its
name should not start with ``_``). It can be arbitrarily nested in other
:class:`Module` instances or lists and dictionaries.
:meth:`Module.parameters` can be used to extract a nested dictionary with all
the parameters of a module and its submodules.
A :class:`Module` can also keep track of "frozen" parameters.
:meth:`Module.trainable_parameters` returns only the subset of
:meth:`Module.parameters` that is not frozen. When using
:meth:`mlx.nn.value_and_grad` the gradients returned will be with respect to these
trainable parameters.
Updating the parameters
^^^^^^^^^^^^^^^^^^^^^^^
MLX modules allow accessing and updating individual parameters. However, most
times we need to update large subsets of a module's parameters. This action is
performed by :meth:`Module.update`.
Value and grad
--------------
Using a :class:`Module` does not preclude using MLX's high order function
transformations (:meth:`mlx.core.value_and_grad`, :meth:`mlx.core.grad`, etc.). However,
these function transformations assume pure functions, namely the parameters
should be passed as an argument to the function being transformed.
There is an easy pattern to achieve that with MLX modules
.. code-block:: python
model = ...
def f(params, other_inputs):
model.update(params) # <---- Necessary to make the model use the passed parameters
return model(other_inputs)
f(model.trainable_parameters(), mx.zeros((10,)))
However, :meth:`mlx.nn.value_and_grad` provides precisely this pattern and only
computes the gradients with respect to the trainable parameters of the model.
In detail:
- it wraps the passed function with a function that calls :meth:`Module.update`
to make sure the model is using the provided parameters.
- it calls :meth:`mlx.core.value_and_grad` to transform the function into a function
that also computes the gradients with respect to the passed parameters.
- it wraps the returned function with a function that passes the trainable
parameters as the first argument to the function returned by
:meth:`mlx.core.value_and_grad`
.. autosummary::
:toctree: _autosummary
value_and_grad
Neural Network Layers
---------------------
.. autosummary::
:toctree: _autosummary
:template: nn-module-template.rst
Embedding
ReLU
GELU
SiLU
Linear
Conv1d
Conv2d
LayerNorm
RMSNorm
GroupNorm
RoPE
MultiHeadAttention
Sequential
Layers without parameters (e.g. activation functions) are also provided as
simple functions.
.. autosummary::
:toctree: _autosummary_functions
:template: nn-module-template.rst
gelu
gelu_approx
gelu_fast_approx
relu
silu
Loss Functions
--------------
.. autosummary::
:toctree: _autosummary_functions
:template: nn-module-template.rst
losses.cross_entropy
losses.binary_cross_entropy
losses.l1_loss
losses.mse_loss
losses.nll_loss
losses.kl_div_loss