mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-26 02:33:21 +08:00
132 lines
3.9 KiB
Plaintext
132 lines
3.9 KiB
Plaintext
![]() |
.. _mlp:
|
||
|
|
||
|
Multi-Layer Perceptron
|
||
|
----------------------
|
||
|
|
||
|
In this example we'll learn to use ``mlx.nn`` by implementing a simple
|
||
|
multi-layer perceptron to classify MNIST.
|
||
|
|
||
|
As a first step import the MLX packages we need:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx.nn as nn
|
||
|
import mlx.optimizers as optim
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
The model is defined as the ``MLP`` class which inherits from
|
||
|
:class:`mlx.nn.Module`. We follow the standard idiom to make a new module:
|
||
|
|
||
|
1. Define an ``__init__`` where the parameters and/or submodules are setup. See
|
||
|
the :ref:`Module class docs<module_class>` for more information on how
|
||
|
:class:`mlx.nn.Module` registers parameters.
|
||
|
2. Define a ``__call__`` where the computation is implemented.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
class MLP(nn.Module):
|
||
|
def __init__(
|
||
|
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
|
||
|
):
|
||
|
super().__init__()
|
||
|
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
|
||
|
self.layers = [
|
||
|
nn.Linear(idim, odim)
|
||
|
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
|
||
|
]
|
||
|
|
||
|
def __call__(self, x):
|
||
|
for l in self.layers[:-1]:
|
||
|
x = mx.maximum(l(x), 0.0)
|
||
|
return self.layers[-1](x)
|
||
|
|
||
|
|
||
|
We define the loss function which takes the mean of the per-example cross
|
||
|
entropy loss. The ``mlx.nn.losses`` sub-package has implementations of some
|
||
|
commonly used loss functions.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
def loss_fn(model, X, y):
|
||
|
return mx.mean(nn.losses.cross_entropy(model(X), y))
|
||
|
|
||
|
We also need a function to compute the accuracy of the model on the validation
|
||
|
set:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
def eval_fn(model, X, y):
|
||
|
return mx.mean(mx.argmax(model(X), axis=1) == y)
|
||
|
|
||
|
Next, setup the problem parameters and load the data:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
num_layers = 2
|
||
|
hidden_dim = 32
|
||
|
num_classes = 10
|
||
|
batch_size = 256
|
||
|
num_epochs = 10
|
||
|
learning_rate = 1e-1
|
||
|
|
||
|
# Load the data
|
||
|
import mnist
|
||
|
train_images, train_labels, test_images, test_labels = map(
|
||
|
mx.array, mnist.mnist()
|
||
|
)
|
||
|
|
||
|
Since we're using SGD, we need an iterator which shuffles and constructs
|
||
|
minibatches of examples in the training set:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
def batch_iterate(batch_size, X, y):
|
||
|
perm = mx.array(np.random.permutation(y.size))
|
||
|
for s in range(0, y.size, batch_size):
|
||
|
ids = perm[s : s + batch_size]
|
||
|
yield X[ids], y[ids]
|
||
|
|
||
|
|
||
|
Finally, we put it all together by instantiating the model, the
|
||
|
:class:`mlx.optimizers.SGD` optimizer, and running the training loop:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Load the model
|
||
|
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes)
|
||
|
mx.eval(model.parameters())
|
||
|
|
||
|
# Get a function which gives the loss and gradient of the
|
||
|
# loss with respect to the model's trainable parameters
|
||
|
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
||
|
|
||
|
# Instantiate the optimizer
|
||
|
optimizer = optim.SGD(learning_rate=learning_rate)
|
||
|
|
||
|
for e in range(num_epochs):
|
||
|
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
||
|
loss, grads = loss_and_grad_fn(model, X, y)
|
||
|
|
||
|
# Update the optimizer state and model parameters
|
||
|
# in a single call
|
||
|
optimizer.update(model, grads)
|
||
|
|
||
|
# Force a graph evaluation
|
||
|
mx.eval(model.parameters(), optimizer.state)
|
||
|
|
||
|
accuracy = eval_fn(model, test_images, test_labels)
|
||
|
print(f"Epoch {e}: Test accuracy {accuracy.item():.3f}")
|
||
|
|
||
|
|
||
|
.. note::
|
||
|
The :func:`mlx.nn.value_and_grad` function is a convenience function to get
|
||
|
the gradient of a loss with respect to the trainable parameters of a model.
|
||
|
This should not be confused with :func:`mlx.core.value_and_grad`.
|
||
|
|
||
|
The model should train to a decent accuracy (about 95%) after just a few passes
|
||
|
over the training set. The `full example <https://github.com/ml-explore/mlx-examples/tree/main/mlp>`_
|
||
|
is available in the MLX GitHub repo.
|