basic python tests

This commit is contained in:
Awni Hannun 2024-01-15 06:08:18 -08:00
parent 9739c72781
commit 0005cfe053
3 changed files with 79 additions and 21 deletions

View File

@ -1,5 +1,4 @@
// Copyright © 2023 Apple Inc.
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
@ -163,6 +162,19 @@ py::object tree_unflatten(
});
}
py::object tree_unflatten_none(
py::object tree,
const std::vector<array>& values,
int index = 0) {
return tree_map(tree, [&](py::handle obj) {
if (py::isinstance<py::none>(obj)) {
return py::cast(values[index++]);
} else {
return py::cast<py::object>(obj);
}
});
}
auto validate_argnums_argnames(
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
@ -438,30 +450,36 @@ auto py_vmap(
}
auto py_compile(const py::function& fun) {
// This map is used to Cache the tree structure of the outputs
static std::unordered_map<size_t, py::object> tree_cache;
return [fun](const py::args& args) {
// Inputs must be array or tree of arrays
auto inputs = tree_flatten(args, true);
// py_value_out will hold the output of the python function in order to be
// able to reconstruct the python tree of extra return values
py::object py_outputs;
auto compile_fun =
[&fun, &args, &inputs, &py_outputs](const std::vector<array>& a) {
// Call the python function
py_outputs = fun(*tree_unflatten(args, a));
// Flatten the outputs
return tree_flatten(py_outputs, true);
};
// Compile and call
// TODO, awni, I think this cast is ok??
size_t fun_id = reinterpret_cast<size_t>(fun.ptr());
auto compile_fun = [fun_id, &fun, &args, &inputs](
const std::vector<array>& a) {
// Call the python function
py::object py_outputs = fun(*tree_unflatten(args, a));
// Flatten the outputs
auto outputs = tree_flatten(py_outputs, true);
py_outputs =
tree_map(py_outputs, [](const py::handle& x) { return py::none(); });
tree_cache.insert({fun_id, py_outputs});
return outputs;
};
// Compile and call
auto outputs = detail::compile(compile_fun, fun_id)(inputs);
// Put the outputs back in the container
return tree_unflatten(py_outputs, outputs);
py::object py_outputs = tree_cache.at(fun_id);
return tree_unflatten_none(py_outputs, outputs);
};
}

View File

@ -15,7 +15,12 @@ class TestCompile(mlx_tests.MLXTestCase):
compiled_fn = mx.compile(fun)
x = mx.array(1.0)
y = mx.array(1.0)
# out = compiled_fn(x, y)
out = compiled_fn(x, y)
self.assertEqual(out.item(), 2.0)
# Try again
out = compiled_fn(x, y)
self.assertEqual(out.item(), 2.0)
if __name__ == "__main__":

View File

@ -1,6 +1,8 @@
// Copyright © 2023 Apple Inc.
#include <iostream> // TODO
#include "doctest/doctest.h"
#include "mlx/utils.h" // TODO
#include "mlx/mlx.h"
@ -33,17 +35,50 @@ TEST_CASE("test simple compile") {
CHECK(array_equal(out, array({3.0f, 4.0f})).item<bool>());
}
std::vector<array> fun1(const std::vector<array>& inputs) {
std::vector<array> grad_fun(const std::vector<array>& inputs) {
auto loss = [](std::vector<array> ins) { return exp(ins[0] + ins[1]); };
return grad(loss)(inputs);
return grad(loss, {0, 1})(inputs);
}
TEST_CASE("test compile with grad") {
auto x = array(1.0f);
auto y = array(1.0f);
auto grads_expected = fun1({x, y});
auto grads_compile = compile(fun1)({x, y});
auto grads_expected = grad_fun({x, y});
auto grads_compile = compile(grad_fun)({x, y});
CHECK_EQ(grads_compile[0].item<float>(), grads_expected[0].item<float>());
CHECK_EQ(grads_compile[1].item<float>(), grads_expected[1].item<float>());
}
TEST_CASE("test compile inputs with primitive") {
auto [k1, k2] = random::split(random::key(0));
auto x = random::uniform({5, 5}, k1);
auto y = random::uniform({5, 5}, k2);
auto expected = simple_fun({x, y})[0];
x = random::uniform({5, 5}, k1);
y = random::uniform({5, 5}, k2);
auto out = compile(simple_fun)({x, y})[0];
CHECK(array_equal(expected, out).item<bool>());
// Same thing twice
out = compile(simple_fun)({x, y})[0];
CHECK(array_equal(expected, out).item<bool>());
}
/*std::vector<array> bigger_fun(const std::vector<array>& inputs) {
auto x = inputs[1];
for (int i = 1; i < inputs.size(); ++i) {
w = inputs[i]
x = maximum(matmul(x, w), 0);
}
return take(x, array(3)) - logsumexp(x);
}
TEST_CASE("test bigger graph") {
std::vector<array> inputs;
inputs.push_back(
for (int
for
}*/
TEST_CASE("test nested compile") {}