mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-24 20:28:16 +08:00
More jitting (#1132)
* docs + circle min size build * jit scan, arange, softmax * add sort * jit reductions * remove print * fix deps * clean includes / nits
This commit is contained in:
190
mlx/backend/metal/kernels/softmax.h
Normal file
190
mlx/backend/metal/kernels/softmax.h
Normal file
@@ -0,0 +1,190 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
template <typename T>
|
||||
inline T softmax_exp(T x) {
|
||||
// Softmax doesn't need high precision exponential cause x is gonna be in
|
||||
// (-oo, 0] anyway and subsequently it will be divided by sum(exp(x_i)).
|
||||
return fast::exp(x);
|
||||
}
|
||||
|
||||
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
[[kernel]] void softmax_single_row(
|
||||
const device T* in,
|
||||
device T* out,
|
||||
constant int& axis_size,
|
||||
uint gid [[threadgroup_position_in_grid]],
|
||||
uint _lid [[thread_position_in_threadgroup]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
int lid = _lid;
|
||||
|
||||
constexpr int SIMD_SIZE = 32;
|
||||
|
||||
threadgroup AccT local_max[SIMD_SIZE];
|
||||
threadgroup AccT local_normalizer[SIMD_SIZE];
|
||||
|
||||
AccT ld[N_READS];
|
||||
|
||||
in += gid * axis_size + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
ld[i] = AccT(in[i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
ld[i] = ((lid * N_READS + i) < axis_size) ? AccT(in[i])
|
||||
: Limits<AccT>::finite_min;
|
||||
}
|
||||
}
|
||||
if (simd_group_id == 0) {
|
||||
local_max[simd_lane_id] = Limits<AccT>::finite_min;
|
||||
local_normalizer[simd_lane_id] = 0;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Get the max
|
||||
AccT maxval = Limits<AccT>::finite_min;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
maxval = (maxval < ld[i]) ? ld[i] : maxval;
|
||||
}
|
||||
maxval = simd_max(maxval);
|
||||
if (simd_lane_id == 0) {
|
||||
local_max[simd_group_id] = maxval;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (simd_group_id == 0) {
|
||||
maxval = simd_max(local_max[simd_lane_id]);
|
||||
if (simd_lane_id == 0) {
|
||||
local_max[0] = maxval;
|
||||
}
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
maxval = local_max[0];
|
||||
|
||||
// Compute exp(x_i - maxval) and store the partial sums in local_normalizer
|
||||
AccT normalizer = 0;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
AccT exp_x = softmax_exp(ld[i] - maxval);
|
||||
ld[i] = exp_x;
|
||||
normalizer += exp_x;
|
||||
}
|
||||
normalizer = simd_sum(normalizer);
|
||||
if (simd_lane_id == 0) {
|
||||
local_normalizer[simd_group_id] = normalizer;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (simd_group_id == 0) {
|
||||
normalizer = simd_sum(local_normalizer[simd_lane_id]);
|
||||
if (simd_lane_id == 0) {
|
||||
local_normalizer[0] = normalizer;
|
||||
}
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
normalizer = 1 / local_normalizer[0];
|
||||
|
||||
// Normalize and write to the output
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
out[i] = T(ld[i] * normalizer);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
if ((lid * N_READS + i) < axis_size) {
|
||||
out[i] = T(ld[i] * normalizer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
[[kernel]] void softmax_looped(
|
||||
const device T* in,
|
||||
device T* out,
|
||||
constant int& axis_size,
|
||||
uint gid [[threadgroup_position_in_grid]],
|
||||
uint lid [[thread_position_in_threadgroup]],
|
||||
uint lsize [[threads_per_threadgroup]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
in += gid * axis_size;
|
||||
|
||||
constexpr int SIMD_SIZE = 32;
|
||||
|
||||
threadgroup AccT local_max[SIMD_SIZE];
|
||||
threadgroup AccT local_normalizer[SIMD_SIZE];
|
||||
|
||||
// Get the max and the normalizer in one go
|
||||
AccT prevmax;
|
||||
AccT maxval = Limits<AccT>::finite_min;
|
||||
AccT normalizer = 0;
|
||||
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
|
||||
r++) {
|
||||
int offset = r * lsize * N_READS + lid * N_READS;
|
||||
AccT vals[N_READS];
|
||||
if (offset + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = AccT(in[offset + i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = (offset + i < axis_size) ? AccT(in[offset + i])
|
||||
: Limits<AccT>::finite_min;
|
||||
}
|
||||
}
|
||||
prevmax = maxval;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
maxval = (maxval < vals[i]) ? vals[i] : maxval;
|
||||
}
|
||||
normalizer *= softmax_exp(prevmax - maxval);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
normalizer += softmax_exp(vals[i] - maxval);
|
||||
}
|
||||
}
|
||||
// Now we got partial normalizer of N_READS * ceildiv(axis_size, N_READS *
|
||||
// lsize) parts. We need to combine them.
|
||||
// 1. We start by finding the max across simd groups
|
||||
// 2. We then change the partial normalizers to account for a possible
|
||||
// change in max
|
||||
// 3. We sum all normalizers
|
||||
prevmax = maxval;
|
||||
maxval = simd_max(maxval);
|
||||
normalizer *= softmax_exp(prevmax - maxval);
|
||||
normalizer = simd_sum(normalizer);
|
||||
|
||||
// Now the normalizer and max value is correct for each simdgroup. We write
|
||||
// them shared memory and combine them.
|
||||
prevmax = maxval;
|
||||
if (simd_lane_id == 0) {
|
||||
local_max[simd_group_id] = maxval;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
maxval = simd_max(local_max[simd_lane_id]);
|
||||
normalizer *= softmax_exp(prevmax - maxval);
|
||||
if (simd_lane_id == 0) {
|
||||
local_normalizer[simd_group_id] = normalizer;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
normalizer = simd_sum(local_normalizer[simd_lane_id]);
|
||||
normalizer = 1 / normalizer;
|
||||
|
||||
// Finally given the normalizer and max value we can directly write the
|
||||
// softmax output
|
||||
out += gid * axis_size;
|
||||
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
|
||||
r++) {
|
||||
int offset = r * lsize * N_READS + lid * N_READS;
|
||||
if (offset + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
out[offset + i] = T(softmax_exp(in[offset + i] - maxval) * normalizer);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
if (offset + i < axis_size) {
|
||||
out[offset + i] =
|
||||
T(softmax_exp(in[offset + i] - maxval) * normalizer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user