More pipelining for the sm_80 gemm

This commit is contained in:
Angelos Katharopoulos 2025-08-09 22:46:31 -07:00
parent 6fce01593a
commit 05583bcd10
2 changed files with 36 additions and 29 deletions

View File

@ -22,7 +22,7 @@ void simple_gemm(
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 64;
constexpr int BK = 32;
auto kernel = ab_t_aligned<DataType, BM, BN, BK>;
cudaFuncSetAttribute(
@ -33,7 +33,7 @@ void simple_gemm(
kernel,
grid,
8 * WARP_SIZE,
2 * sizeof(DataType) * (BM * BK + BN * BK),
4 * sizeof(DataType) * (BM * BK + BN * BK),
a.data<DataType>(),
b.data<DataType>(),
out.data<DataType>(),

View File

@ -40,6 +40,7 @@ __global__ void ab_t_aligned(const T* a, const T* b, T* y, int N, int K) {
constexpr int NUM_WARPS = WARPS_M * WARPS_N;
constexpr int WARP_STEP_M = BM / WARPS_M;
constexpr int WARP_STEP_N = BN / WARPS_N;
constexpr int PIPE = 4;
// Precompute some offsets for each thread
const int warpid = threadIdx.x / 32;
@ -54,43 +55,49 @@ __global__ void ab_t_aligned(const T* a, const T* b, T* y, int N, int K) {
// Allocate shared memory
extern __shared__ char shmem[];
SharedTile<T, BM, BK>(&as)[2] = *(SharedTile<T, BM, BK>(*)[2])(&shmem[0]);
SharedTile<T, BN, BK>(&bs)[2] =
*(SharedTile<T, BN, BK>(*)[2])(&shmem[sizeof(T) * 2 * BM * BK]);
// Allocate registers for the MMA
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
SharedTile<T, BM, BK>(&as)[PIPE] =
*(SharedTile<T, BM, BK>(*)[PIPE])(&shmem[0]);
SharedTile<T, BN, BK>(&bs)[PIPE] =
*(SharedTile<T, BN, BK>(*)[PIPE])(&shmem[sizeof(T) * PIPE * BM * BK]);
// Move the global pointers to the tile
a += blockIdx.y * BM * K;
b += blockIdx.x * BN * K;
y += blockIdx.y * BM * N + blockIdx.x * BN;
// Zero the accumulators
C.fill(0);
// Start the SM pipeline
load_async<NUM_WARPS>(as[0], as[0].base_addr(), a, K);
load_async<NUM_WARPS>(bs[0], bs[0].base_addr(), b, K);
cp_async_commit();
int tic = 0;
for (int k_block = BK; k_block < K; k_block += BK) {
load_async<NUM_WARPS>(as[tic ^ 1], as[tic ^ 1].base_addr(), a + k_block, K);
load_async<NUM_WARPS>(bs[tic ^ 1], bs[tic ^ 1].base_addr(), b + k_block, K);
MLX_UNROLL
for (int i = 0; i < PIPE - 1; i++) {
load_async<NUM_WARPS>(as[i], as[i].base_addr(), a + i * BK, K);
load_async<NUM_WARPS>(bs[i], bs[i].base_addr(), b + i * BK, K);
cp_async_commit();
cp_async_wait<1>();
gemm_ab_t<T, BM, BN, BK, WARPS_M, WARPS_N>(
C, as[tic], bs[tic], lane_row_a, lane_row_b, lane_col);
tic ^= 1;
}
// Empty the pipeline
cp_async_wait_all();
gemm_ab_t<T, BM, BN, BK, WARPS_M, WARPS_N>(
C, as[tic], bs[tic], lane_row_a, lane_row_b, lane_col);
// Allocate and zero the MMA accumulator
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
C.fill(0);
// Matmul loop
int num_blocks = K / BK;
int k_block = (PIPE - 1) * BK;
int sread = 0;
int swrite = PIPE - 1;
for (int i = 0; i < num_blocks; i++) {
cp_async_wait<PIPE - 2>();
if (k_block < K) {
load_async<NUM_WARPS>(as[swrite], as[swrite].base_addr(), a + k_block, K);
load_async<NUM_WARPS>(bs[swrite], bs[swrite].base_addr(), b + k_block, K);
}
gemm_ab_t<T, BM, BN, BK, WARPS_M, WARPS_N>(
C, as[sread], bs[sread], lane_row_a, lane_row_b, lane_col);
cp_async_commit();
swrite = sread;
sread = (sread + 1) % PIPE;
}
C.store_global(y, N, offset_m, offset_n);
}