diff --git a/python/tests/test_nn.py b/python/tests/test_nn.py index b93b77e66..8be69535f 100644 --- a/python/tests/test_nn.py +++ b/python/tests/test_nn.py @@ -101,13 +101,28 @@ class TestNN(mlx_tests.MLXTestCase): self.assertTrue(mx.allclose(losses_sum, expected_sum)) def test_binary_cross_entropy(self): - inputs = mx.array([[0.5, 0.5], [0.5, 0.5]]) - targets = mx.array([[0.0, 1.0], [1.0, 0.0]]) + inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]]) + targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]]) # Test with reduction 'none' losses_none = nn.losses.binary_cross_entropy(inputs, targets, reduction="none") - expected_none = mx.array([[0.693147, 0.693147], [0.693147, 0.693147]]) - self.assertTrue(mx.allclose(losses_none, expected_none)) + expected_none = mx.array( + [ + [ + 0.6931471824645996, + 0.6931471824645996, + 0.2231435477733612, + 0.10536054521799088, + ], + [ + 2.3025851249694824, + 0.3566749691963196, + 0.6931471824645996, + 0.6931471824645996, + ], + ] + ) + self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8)) # Test with reduction 'mean' losses_mean = nn.losses.binary_cross_entropy(inputs, targets, reduction="mean") @@ -119,6 +134,43 @@ class TestNN(mlx_tests.MLXTestCase): expected_sum = mx.sum(expected_none) self.assertTrue(mx.allclose(losses_sum, expected_sum)) + def test_bce_loss_module(self): + inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]]) + targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]]) + + # Test with reduction 'none' + loss_module_none = nn.losses.BCELoss(reduction="none") + losses_none = loss_module_none(inputs, targets) + expected_none = mx.array( + [ + [ + 0.6931471824645996, + 0.6931471824645996, + 0.2231435477733612, + 0.10536054521799088, + ], + [ + 2.3025851249694824, + 0.3566749691963196, + 0.6931471824645996, + 0.6931471824645996, + ], + ] + ) + self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8)) + + # Test with reduction 'mean' + loss_module_mean = nn.losses.BCELoss(reduction="mean") + losses_mean = loss_module_mean(inputs, targets) + expected_mean = mx.mean(expected_none) + self.assertTrue(mx.allclose(losses_mean, expected_mean)) + + # Test with reduction 'sum' + loss_module_sum = nn.losses.BCELoss(reduction="sum") + losses_sum = loss_module_sum(inputs, targets) + expected_sum = mx.sum(expected_none) + self.assertTrue(mx.allclose(losses_sum, expected_sum)) + def test_gelu(self): inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]