2-Pass Sdpa Inference Kernel (#1597)

This commit is contained in:
Angelos Katharopoulos
2024-11-18 17:31:53 -08:00
committed by GitHub
parent 9bd03dd9b4
commit 073076ac7d
4 changed files with 310 additions and 37 deletions

View File

@@ -8,6 +8,7 @@
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels/scaled_dot_product_attention_params.h"
#include "mlx/fast_primitives.h"
#include "mlx/utils.h"
namespace mlx::core::fast {
@@ -184,6 +185,94 @@ void sdpa_vector(
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void sdpa_vector_2pass(
const Stream& s,
metal::Device& d,
const array& q,
const array& k,
const array& v,
array& out,
float scale) {
// Set the kernel name
std::string kname;
kname.reserve(64);
kname += "sdpa_vector_2pass_1_";
kname += get_type_string(q.dtype());
kname += "_";
kname += std::to_string(q.shape(-1));
// Compute the necessary sizes
int gqa_factor = q.shape(1) / k.shape(1);
int N = k.shape(2);
int blocks = 32;
int B = q.shape(0) * q.shape(1);
size_t k_stride = k.strides()[1];
size_t v_stride = v.strides()[1];
MTL::Size group_dims(8 * 32, 1, 1);
MTL::Size grid_dims(1, B, blocks);
// Allocate the intermediates
std::vector<int> intermediate_shape;
intermediate_shape.reserve(out.ndim() + 1);
intermediate_shape.insert(
intermediate_shape.end(), out.shape().begin(), out.shape().end() - 1);
intermediate_shape.push_back(blocks);
intermediate_shape.push_back(out.shape().back());
array intermediate(intermediate_shape, float32, nullptr, {});
intermediate_shape.pop_back();
array sums(intermediate_shape, float32, nullptr, {});
array maxs(std::move(intermediate_shape), float32, nullptr, {});
intermediate.set_data(allocator::malloc_or_wait(intermediate.nbytes()));
sums.set_data(allocator::malloc_or_wait(sums.nbytes()));
maxs.set_data(allocator::malloc_or_wait(maxs.nbytes()));
d.add_temporary(intermediate, s.index);
d.add_temporary(sums, s.index);
d.add_temporary(maxs, s.index);
// Get the kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname);
compute_encoder.set_compute_pipeline_state(kernel);
// Set its arguments
compute_encoder.set_input_array(q.data_shared_ptr() == nullptr ? out : q, 0);
compute_encoder.set_input_array(k, 1);
compute_encoder.set_input_array(v, 2);
compute_encoder.set_output_array(intermediate, 3);
compute_encoder.set_output_array(sums, 4);
compute_encoder.set_output_array(maxs, 5);
compute_encoder.set_bytes(gqa_factor, 6);
compute_encoder.set_bytes(N, 7);
compute_encoder.set_bytes(k_stride, 8);
compute_encoder.set_bytes(v_stride, 9);
compute_encoder.set_bytes(scale, 10);
// Launch
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
// Final pass
kname.clear();
kname += "sdpa_vector_2pass_2_";
kname += get_type_string(q.dtype());
kname += "_";
kname += std::to_string(q.shape(-1));
// Get the kernel
kernel = d.get_kernel(kname);
compute_encoder.set_compute_pipeline_state(kernel);
// Set its arguments
compute_encoder.set_input_array(intermediate, 0);
compute_encoder.set_input_array(sums, 1);
compute_encoder.set_input_array(maxs, 2);
compute_encoder.set_output_array(out, 3);
// Launch
group_dims = MTL::Size(1024, 1, 1);
grid_dims = MTL::Size(1, B, 1);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
} // namespace
void ScaledDotProductAttention::eval_gpu(
@@ -249,7 +338,17 @@ void ScaledDotProductAttention::eval_gpu(
} else {
o.set_data(allocator::malloc_or_wait(o.nbytes()));
}
sdpa_vector(s, d, q, k, v, o, scale_);
// We route to the 2 pass fused attention if
// - The device is large and the sequence length long
// - The sequence length is even longer and we have gqa
char devc = d.get_architecture().back();
if ((devc == 'd' && k.shape(2) >= 1024) ||
(k.shape(1) < q.shape(1) && k.shape(2) >= 4096)) {
sdpa_vector_2pass(s, d, q, k, v, o, scale_);
} else {
sdpa_vector(s, d, q, k, v, o, scale_);
}
}
// Full attention mode